
inheritance



Revue
• How do you declare a class or a function to be a 

friend?  What’s the point?

• What would an operator==
function look like for Number?

• How about an operator!=
function?

• How about an operator== function that would 
let you compare a Number to an int?

• What’s a static member variable?

• What sorts of data can a static member function 
access?

class Number
{
  public:
  
  private:
    int n;
};



Inheritance

• Inheritance is a C++ feature in which one 
class can “inherit” the member functions and 
variables from another class

• The new class (the one doing the inheriting) 
is called the derived class

• The class we’re inheriting from is called the 
base class



class Rectangle
{
  public:
    Rectangle();

    // skipping stuff...

    int area();
    void draw();

  private:
    Color innerColor;
    Color lineColor;
    int lineWidth;
    int x, y;
    int width, length;
    int id;
};

• Let’s say we have a 
Rectangle class, with a 
fair amount of stuff in it

• We’d like to build a simple 
Triangle class

• Most of the code would 
be the same between 
these two classes! 

• area(), draw() would 
change



Inheritance

• We could “inherit” most of 
Triangle’s code from Rectangle

• A better way:  move most of 
Rectangle’s code into a new base 
class - Shape - and derive both 
Triangle and Rectangle from Shape

• Triangle and Rectangle now only 
need to implement specific 
features:  the general stuff can be 
stuck in the Shape class

Rec Tri

Shape



protected:
  Color innerColor;
  Color lineColor;
  int lineWidth;
  int x, y;
  int width, length;
private:
  int id;

Inheritance 2

• Derived classes inherit everything 
in the base class(es)

• Each instance of Triangle has:

• All the member variables and 
functions from the Shape class

• And all the member variables 
and functions from Triangle

• Triangles has copies of x, y, id, etc. 
But can it access them?

Rec Tri

Shape

void calc();
float angle;



Access Specifiers

• public means the same thing it always did

• private too:  private members can only be 
accessed from within the class - not any 
others (including any derived classes!)

• New! protected variables can be 
accessed by the class and any derived classes 
- but not any other class!



protected:
  Color innerColor;
  Color lineColor;
  int lineWidth;
  int x, y;
  int width, length;
private:
  int id;

Access

• So, in this set of classes:

• innerColor, lineColor, lineWidth, 
x, y, width, height are all 
accessible by Shape, 
Triangle, Rectangle, and no 
other classes

• id is only accessible by Shape

• Same access rules apply for 
member functions

Rec Tri

Shape

void calc();
float angle;



class Triangle : public Shape
{
  public:
    Triangle();
    int area();

  private:
    void calc();
    // etc...
};

class name colon public, followed by
base class name

• Base class must 
already be 
declared here

• Triangle can 
have all its own 
stuff - methods, 
vars, whatever

...syntax



Inheritance

• What gets inherited?

• All member variables, (nearly) all functions

• What does not get inherited?

• constructors and destructors

• Assignment operators (operator=)

• Friends



Constructors
• Remember, a constructor gets called for 

every class that gets instantiated

• Sometimes it’s a behind-the-scenes 
constructor, but there always is one!

• With inheritance, there are (at least) two 
classes involved:  the base class and the 
derived class

• So, at least two constructors are getting 
called!



Snippet
• What is the output of 

this program?

class Base
{
  public:
    Base()
    { cout << "base\n"; }
};

class Derived : public Base
{
  public:
    Derived()

  { cout << "derived\n"; }
};

int main()
{

 Derived d;

 return 0;
}



Construction Order

• Base classes will always 
be constructed before 
any derived classes.   
(Why?)

• The base class 
constructor is getting 
called, even though it’s 
not being called explicitly

• If Base has multiple 
constructors, which one 
gets called? 

class Base
{
  public:
    Base()
    { cout << "base\n"; }

   Base( int x )
    { cout << "base 2\n"; }
};

class Derived : public Base
{
  public:
    Derived()

  { cout << "derived\n"; }
};



Constructor Init List
• C++ will call the default 

constructor for any base 
classes automatically

• If there is no default 
constructor (when would 
that be?) then we have to 
explicitly call one

• This requires special syntax 
called the constructor 
init list.



Constructor 
Init Lists

• The constructor init 
list lets you pass 
parameters to the 
base class constructor

• This is like a function 
call: it will call the 
correct overloaded 
constructor

class Base
{
  public:
    Base()
    { cout << "base\n"; }

   Base( int x )
    { cout << "base 2\n"; }
};

class Derived : public Base
{
  public:
    Derived();
};

Derived::Derived()
  : Base(5)
{
} Constructor Init List



More CIL
• The CIL can be used 

for regular member 
variables, too

• Here, x and y are 
integers being 
initialized in the 
Constructor Init List

• This happens before 
the constructor body 
executes!

class Derived : public Base
{
  public:
    Derived();
  private:
    int x, y;
};

Derived::Derived()
  : Base(5), x(5), y(18)
{
}



Coding

• Let’s play with inheritance!



• What is Dog’s 
relationship to Pet?

• What member variables/
functions of Pet are 
inherited by Dog?

• What kind of class is 
woofy? Are we dealing 
with one class or two 
classes?

class Pet
{
   public:
      Pet();
      ~Pet();
      void play();
      void makeNoise();
   protected:
      string name;
   private:
      string owner;
};

class Dog : public Pet
{
   public:
      Dog();
      void slobber();
};

int main()
{
    Dog woofy;
}

Backing up...



class Dog : public Pet
{
  public:
      Pet();
      ~Pet();
      Dog();
      void play();
      void slobber();
  private:
      string name;

  (hidden):
      string owner;
};

class Pet
{
   public:
      Pet();
      ~Pet();
      void play();
      void makeNoise();
   protected:
      string name;
   private:
      string owner;
};

class Dog : public Pet
{
   public:
      Dog();
      void slobber();
};

int main()
{
    Dog woofy;
}

• Dog is a single class

• However, Dog has also 
inherited everything from 
Pet!

looks like:



Object Types

• tri is of type Triangle

• We can also say that tri is a 
Shape, too!

• Triangle is derived from 
Shape, so everything in Shape 
will also be in every instance 
of Triangle

Rec Tri

Shape

Triangle tri;



More Object Types

• Since a Triangle is of type Shape, we can refer to 
it as if it were a Shape.

• This works especially well with pointers:

Shape* ptr = new Triangle;

• What type is ptr?

• What kind of thing is ptr pointing to?



Even More Object Types

• ptr is a Shape pointer.  Given a pointer, we can’t 
tell exactly what kind of thing it’s pointing to!

• It can only point to a Shape, or something 
derived from Shape

• So it could be Shape, Triangle, Rectangle, Circle, 
Octrahedron... any class derived from shape!

Shape* ptr = new Triangle;



Why this is awesome:
• It lets us treat all kinds of Shapes exactly the 

same way

• No need to know what type a pointer is actually 
pointing to - this is called polymorphism

• Can only use Shape’s interface

void printShapeArea( Shape* s )
{

cout << “This shape’s area is:”
     << s->area() << endl;

}

What type does s point 
to? Triangle?

Rectangle? Circle?
Dodecahedron?

Polygon? As long as 
it is derived from Shape, 
we don’t have to care!



For example:
• Here we’re defining an array of pointer-to-

Shapes:

• Each element in array can be pointing to a 
different kind of Shape

• They all have a common interface though, so 
we can treat them all identically

Shape* array[10];



An Issue

• We can transparently treat 
MooCow as a FarmAnimal  (this 
is what polymorphism means!)

• So we can pass MooCow into a 
function that accepts FarmAnimal.

FarmAnimal
int weight;

MooCow
void chewCud();
bool hungry;

void printWeight( FarmAnimal animal )
{
    cout << animal.weight;
}

int main()
{
    MooCow cow;
    printWeight( cow );
}

let’s talk about this...
• How is cow being passed?

• What type is cow?

• What type does 
printWeight accept?



Object Slicing
• For this to work, a MooCow must be converted to 

a FarmAnimal

• The compiler takes all the FarmAnimal bits and 
leaves behind all the MooCow bits!

void printWeight( FarmAnimal animal )
{
    cout << animal.weight;
}

int main()
{
    MooCow cow;
    printWeight( cow );
}

• This is called 
object slicing

• It’s generally bad.

• To prevent it, use 
pointers or 
references instead!



Question
• Pet has a makeNoise 

function

• Pet’s implementation of 
makeNoise() isn’t good 
enough for Cat, so Cat 
overrides it

• Does this code snippet 
compile? What’s the 
output?

class Pet
{
   public:
      void makeNoise()
      {
         cout << “(nothing)”;
      }
};

class Cat : public Pet
{
   public:
      void makeNoise()
      {
         cout << “MEOW!”;
      }
};

Cat animal;
animal.makeNoise();



Question, cont.

• How about this one?class Pet
{
   public:
      void makeNoise()
      {
         cout << “(silence)”;
      }
};

class Cat : public Pet
{
   public:
      void makeNoise()
      {
         cout << “MEOW!”;
      }
};

Cat* animal = new Cat;
animal->makeNoise();

• ... and this one?

Pet* animal = new Cat;
animal->makeNoise();



The Problem
• C++ uses static type checking (early binding) - 

types are checked at compile time, not run-time  
(late binding)!

• A major design goal of C++:  produce code that runs 
as quickly as possible 

• What’s happening here:

• We have a pointer of type Pet

• Pet has a method called makeNoise

• Therefore, Pet::makeNoise is called

Pet* animal = new Cat;
animal->makeNoise();



So then:

• The compiler sees animal as 
a Pet, instead of a Cat

• Therefore Pet::makeNoise() 
is getting called instead of 
Cat::makeNoise()

• How do we tell the 
compiler to figure out the 
correct version of 
makeNoise to call?

class Pet
{
   public:
      void makeNoise()
      {
         cout << “(nothing)”;
      }
};

class Cat : public Pet
{
   public:
      void makeNoise()
      {
         cout << “MEOW!”;
      }
};

Pet* animal = new Cat;
animal->makeNoise();



Virtual Methods
• To do this, we can mark a 

method as virtual.

• The compiler will use 
run-time type 
identification to call the 
most specific version of 
the method that it can!

Shape
virtual method:  area()

Triangle
virtual method:  area()

Equilateral
no area() method Shape* s = new Equilateral;

s->area();

what version of area() gets called?



Virtual: How-to
• To declare a virtual 

method, stick the 
keyword virtual before 
its return type

• This automatically makes 
every overridden version 
of the method virtual too

• Only works in one 
direction: marking 
Cat::makeNoise as virtual 
doesn’t make 
Pet::makeNoise virtual!

class Pet
{
  public:
    virtual void makeNoise()
    {
       cout << “(nothing)”;
    }
};

class Cat : public Pet
{
  public:
    void makeNoise()
    {
       cout << “MEOW!”;
    }
};

virtual



Virtual Rules

• Virtual methods are slightly slower than 
non-virtual methods  (why?)

• Static methods can’t be virtual, and virtual 
methods can’t be static

• One way to make this a non-issue: make 
every base-class method virtual.  (why does 
this work?)

• If in doubt:  make your methods virtual



Inheritance

• Small review:  in which order 
are the constructors 
executed?

• How about the destructors? 
What would make sense here?

Shape
Shape()
~Shape()

Triangle
Triangle
~Triangle()

Equilateral
Equilateral()
~Equilateral()

Equilateral e;



Virtual Destructors

• A destructor is a method like any 
other,  and the same rules apply

• Destructors need to be marked 
virtual!

• What should happen here?

• What does happen, if the destructor 
is not virtual?

Shape
Shape()
~Shape()

Triangle
Triangle
~Triangle()

Equilateral
Equilateral()
~Equilateral()

Shape* s = new Equilateral();
...
delete s;



The Fix

• When using inheritance, 
always make your 
destructors virtual!

• Again, making a virtual 
base class constructor 
makes all inherited 
destructors also be 
virtual

class Pet
{
   public:
      virtual ~Pet();
};

class Cat : public Pet
{
  public:

    // doesn’t need to be
    // marked virtual!
    ~Cat();
};



class Car
{
   public:
      void vroom()
      {
          cout << “Car::vroom\n”;
      }
};

class Geo : public Car
{
  public:
     void vroom()
      {
        cout << “Geo::vroom\n”;

      }
};

• So far we’ve been 
saying that 
overrided functions 
“hide” their base 
class versions

• What would this 
code fragment 
output?

Geo prizm;
prizm.vroom();

Overrided Functions



Overrided Functions
• “Hidden” doesn’t 

mean “gone”, though!

• Sometimes you might 
want to call the base 
class version of a 
function...

• You can do that using 
the scope resolution 
operator  (::)

class Car
{
   public:
      void vroom()
      {
          cout << “Car::vroom\n”;
      }
};

class Geo : public Car
{
  public:
     void vroom()
      {
        cout << “Geo::vroom\n”;
        base::stuff();

      }
};

Geo prizm;
prizm.vroom();

What does this print now?



Some Weird Syntax...
• You can even do this 

from outside a class

• Say you want to call 
the base class 
version of vroom() 
from the main 
function:

class Car
{
   public:
      void vroom()
      {
          cout << “Car::vroom\n”;
      }
};

class Geo : public Car
{
  public:
     void vroom()
      {
        cout << “Geo::vroom\n”;

      }
};

int main()
{
  Geo prizm;
  prizm.base::vroom();
}



Question
• What if we add 

another vroom() 
function - a global 
one?

• Could we call that 
from Geo::vroom()?

void vroom()
{
   cout << “Global Vroom!!\n”;
}

class Car
{
   public:
      void vroom()
      {
          cout << “Car::vroom\n”;
      }
};

class Geo : public Car
{
  public:
     void vroom()
      {
        cout << “Geo::vroom\n”;
        Global vroom()?

      }
};



void vroom()
{
   cout << “Global Vroom!!\n”;
}

class Car
{
   public:
      void vroom()
      {
          cout << “Car::vroom\n”;
      }
};

class Geo : public Car
{
  public:
     void vroom()
      {
        cout << “Geo::vroom\n”;

        ::vroom();

      }
};

• When used on its 
own, :: means “access 
the global scope, not 
the local scope”

• So, to call the global 
vroom() function, we 
use the :: operator to 
call the containing 
scope

Question



A Useless Function

• It’s kinda useless.

• Its only purpose is to help define an interface:  to provide a 
function for derived classes to override

• So it’s not important what Pet::makeNoise itself does!

class Pet
{
   public:
      void makeNoise()
      {
         cout << “(silence)”;
      }
};

• Earlier, we saw this 
implementation of 
the makeNoise() 
function:



Abstract Methods
• An abstract method is a declaration of a 

method, without a definition

• We’re telling the compiler:

• This method won’t be defined in this 
class, but

• Any usable derived class must implement 
this method!

• These are also known as pure virtual 
methods



Abstract Methods

• A class with an abstract method is known as 
an abstract class

• An abstract class can’t be instantiated!

• To be usable, all methods have to be 
defined. Since abstract classes have 
undefined methods (the abstract ones!) they 
can’t be instantiated

• To be usable, a derived class must override 
all abstract methods



Rules

• This turns the class into an 
abstract class

• Weird C++ rule:  every class 
needs to have at least one 
“regular” virtual method 
when also using abstract 
methods!

class Pet
{
  public:
    virtual void makeNoise() = 0;
    virtual string getName();
};

we declare a method to be 
abstract by tacking “= 0” onto 

the declaration



More Coding

• Let’s play with inheritance!

• Again!



Multiple Inheritance
• Sometimes inheriting from 

a single class isn’t enough!

• Say we’ve got the simple 
class hierarchy to the left:

• What do we do when we 
want to define a 
TeachingAssistant 
class?

• A TeachingAssistant both 
teaches and attends classes

• No one base class is enough!

Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;



• We have to make 
TeachingAssistant 
inherit from both Teacher 
and Student!

• So:  our new TA class will 
inherit all the stuff from 
both base classes!

• How would we write an 
introduce method that 
explains what course the 
TA teaches,  and what 
course he/she studies?

Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

TeachingAssistant

void introduce();



• How many courseName 
variables are there in 
TeachingAssistant?

• How do we print out the 
right version at the right 
time?

Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

TeachingAssistant

void introduce();

void TA::introduce()
{
   cout << “I teach: ”;
   cout <<  (?)
   cout << “I study: “;
   cout <<  (?)
}



Multiple Inheritance

• Doing this is pretty 
simple:

• Just add to the list of 
classes your class 
inherits from

• You may need to add 
to the constructor init 
list too!

class Teacher : public Person
{   // declaration mostly omitted
  public:
    Teacher( string name );
};

class Student : public Person
{   // declaration mostly omitted
 public:
    Student( string name );
};

class TA : 

      public Teacher, public Student

{
  public:
    TA() :
      Student(name), Teacher(name)
    {}
};



• One problem you may have 
noticed:

• How many copies of name 
does TeachingAssistant have?

• Which one do we use? Does 
it matter?Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

TeachingAssistant

void introduce();

void TA::introduce()
{
   cout << “My name is:”;
   cout <<  (?)
   cout << “I teach: ”;
   cout <<  (?)
   cout << “I study: “;
   cout <<  (?)
}



• TeachingAssistant is 
derived from both 
Student and Teacher

• Both Student and 
Teacher inherited a 
name attribute from 
Person

• Therefore, 
TeachingAssistant has 
two copies of name!

• This might be OK but it 
might not: could each 
copy of name have a 
different value?



Virtual 
Inheritance

• The way to solve this: virtual 
inheritance

• If you inherit “virtually” from a 
base class, you tell the compiler:

• there must be one instance of 
that base class if someone 
inherits from the current class

• This is weird, and ugly, but it 
solves the problem neatly



• Before we had two  
copies of name in 
TeachingAssistant

• Now, Teacher and Student 
are inheriting virtually from 
Person (red arrows)

• So there will be only one 
copy of Person in any class 
inherited from Teacher and 
Student

• ... aka TeachingAssistant, 
only has a single copy of 
Person - (therefore, name)

Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

TeachingAssistant

void introduce();

how this works:



Virtual 
Inheritance

• To inherit virtually, just 
stick the keyword 
virtual right before 
the public

• This has nothing to do 
with virtual functions!

• Why do both Student 
and Teacher use virtual 
inheritance? Is this 
necessary?

// declarations mostly omitted...
class Person
{
    string name;
};

class Teacher : virtual public Person
{
  public:
    Teacher( string name );
};

class Student : virtual public Person
{
 public:
    Student( string name );
};

class TA : 
      public Teacher, public Student
{
  public:
    TA() :
      Student(name), Teacher(name)
    {}
};



Multiple Inheritance

• Many people disagree on the 
usefulness of Multiple Inheritance

• Most newer languages don’t support MI 
at all, or only a small subset of it

• If you find yourself needing to use MI 
a lot, consider redesigning your 
classes so you don’t!

• Not used nearly as widely as regular 
inheritance


