=Y

I
L II-I-FEILII po gyl s o peiel g p— I
e gl [y ey iy n el g oy i iy L BGLEEL Eea

| [——— _prur_j kasti?

INHERITANCE

Revue

How do you declare a class or a function to be a
friend! What’s the point?

class Number

What would an operator== {

. . ublic:
function look like for Number? P

private:

How about an operator!= int n;
function? bi

How about an operator== function that would
let you compare a Number to an int!

What’s a static member variable?

What sorts of data can a static member function
access!

y
% Inheritance

® Inheritance is a C++ feature in which one
class can “inherit”’ the member functions and
variables from another class

® The new class (the one doing the inheriting)
is called the derived class

® The class we're inheriting from is called the
base class

class Rectangle

{
public:

Rectangle();

// skipping stuff...

int area();
void draw();

private:
Color innerColor;
Color lineColor;
int lineWidth;
int x, vy;
int width, length;
int id;

Let’s say we have a

Rectangle class, with a
fair amount of stuff in it

We'd like to build a simple
Triangle class

Most of the code would
be the same between
these two classes!

area(), draw() would
change

Inheritance

® \We could “inherit” most of
Triangle’s code from Rectangle

® A better way: move most of
Rectangle’s code into a new base
class - Shape - and derive both
Triangle and Rectangle from Shape

/ Triangle and Rectangle now only
need to implement specific
features: the general stuff can be
stuck in the Shape class

protected:

Inheritance 2

Color lineColor;
int lineWidth;

int x, y;

int width, length;

private: ® Derived classes inherit everything
int id; .
in the base class(es)

® FEach instance of Triangle has:

® All the member variables and
functions from the Shape class

/ ® And all the member variables
and functions from Triangle
Rec . . .
® Triangles has copies of x,y, id, etc.
void calc(); But can it access them!?
float angle;

Access Specifiers ™
P \

® public means the same thing it always did

® private too: private members can only be
accessed from within the class - not any
others (including any derived classes!)

¢ New! protected variables can be
accessed by the class and any derived classes
- but not any other class!

protected:
Color innerColor;
Color lineColor;
int lineWidth;
int x, y;
int width, length;
private:
int id;

void calc();
float angle;

Access

® So,in this set of classes:

® innerColor, lineColor, lineWidth,
X, Y, width, height are all
accessible by Shape,
Triangle, Rectangle, and no
other classes

® id is only accessible by Shape

® Same access rules apply for
member functions

class name

\

..syntax

public, followed by
base class nhame

/

Y

class Triangle
{
public:
Triangle();
int area();

private:
void calc();
// etc...

}i

: public Shape

4

® Base class must
already be
declared here

Triangle can
have all its own
stuff - methods,
vars, whatever

Inheritance

® What gets inherited!?

® All member variables, (nearly) all functions
® What does not get inherited!?

® constructors and destructors

® Assignment operators (operator=)

® Friends

"
a

® Remember, a constructor gets called for
every class that gets instantiated

® Sometimes it’s a behind-the-scenes
constructor, but there always is one!

® With inheritance, there are (at least) two

classes involved: the base class and the
derived class

® So, at least two constructors are getting
called!

class Base

{
public:

Base()
{ cout << "base\n"; }

¥

class Derived : public Base

{
public:

Derived()
{ cout << "derived\n"; }

b

int main(Q)

{

Derived d;
return 0;

¥

Snippet

® What is the output of
this program?

Construction Order

class Base

{
public:

Base()
{ cout << "base\n"; }

Base(int x)
{ cout << "base 2\n"; }

¥

class Derived : public Base

{
public:

Derived()
{ cout << "derived\n"; }

s

® Base classes will always

be constructed before
any derived classes.

(Why?)

The base class
constructor is getting
called, even though it’s
not being called explicitly

If Base has multiple
constructors, which one
gets called?

Constructor Init List

e C++ will call the default
constructor for any base
classes automatically

If there is no default
constructor (when would
that be?) then we have to
explicitly call one

This requires special syntax
called the constructor

init list.

class Base

{
public:

Base()
{ cout << "base\n"; }

Base(int x)
{ cout << "base 2\n"; }

s

class Derived : public Base

{
public:

Derived();

s

Derived: :Derived()
Base(5)

Constructor
Init Lists

® The constructor init
ist lets you pass
barameters to the
pase class constructor

® This is like a function
call: it will call the
correct overloaded
constructor

Constructor Init List

class Derived : public Base IL
: More C

public:
Derived();

private: ® [he CIL can be used
int x, y;
-’ for regular member

variables, too

Here, x and y are

Derived: :Derived()

. Base(5), x(5), y(18) integers being
{ initialized in the

1 Constructor Init List

This happens before
the constructor body
executes!

Coding

® | et’s play with inheritance!

class Pet
{
public:
Pet();
~Pet ();
void play();
void makeNoise();
protected:
string name;
private:
string owner;

}i

class Dog : public Pet

{
public:

Dog();
void slobber();

}i:

int main()

{
Dog woofy;

}

Backing up...

.,,'.."'-..

® What is Dog’s
relationship to Pet!?

What member variables/
functions of Pet are
inherited by Dog!?

What kind of class is
woofy? Are we dealing
with one class or two
classes?

class Pet
{
public:
Pet();
~Pet ();
void play();
void makeNoise();
protected:
string name;
private:
string owner;

}i

class Dog : public Pet

{
public:

Dog();
void slobber();

}i:

int main()

{
Dog woofy;

}

class Dog : public Pet

{
public:

Pet();
~Pet();

Dog();

void play();
void slobber();
private:

looks like: string name;
(hidden):
string owner;

}i

® Dog is a single class

® However, Dog has also
inherited everything from
Pet!

Object Types

Triangle tri;

® triis of type Triangle

® Ve can also say that tri is a
Shape, too!

/ ® Triangle is derived from
Shape, so everything in Shape
will also be in every instance

of Triangle

More Object Types

® Since a Triangle is of type Shape, we can refer to
it as if it were a Shape.

® This works especially well with pointers:

Shape* ptr = new Triangle;

nat type is ptr!?

nat kind of thing is ptr pointing to!

Even More Object Types

Shape* ptr = new Triangle;

® ptr is a Shape pointer. Given a pointer, we can'’t
tell exactly what kind of thing it’s pointing to!

® |t can only point to a Shape, or something
derived from Shape

® So it could be Shape, Triangle, Rectangle, Circle,
Octrahedron... any class derived from shape!

&>, Why this is awesome:

® |t lets us treat all kinds of Shapes exactly the
same way

® No need to know what type a pointer is actually
pointing to - this is called polymorphism

'
® Can only use Shape’s interface What type does s point

to!? Triangle?
Rectangle? Circle?
void printShapeArea(Shape* s Dodecahedron!?

{ Polygon? As long as

cout << “This shape’s area is:” it is derived from Shape,
<< s->area() << endl; we don’t have to care!

For example:

® Here we're defining an array of pointer-to-
Shapes:

Shape* array[10];

® Fach element in array can be pointing to a
different kind of Shape

® They all have a common interface though, so
we can treat them all identically

An lssue

FarmAnimal
int weight;

MooCow
void chewCud();
bool hungry;

let’s talk about this...

How is cow being passed?

What type is cow!?

Whawpe does

printVWeight accept!?

r
ol
. Yo
We can transparently treat
MooCow as a FarmAnimal (this
is what polymorphism means!)

So we can pass MooCow into a
function that accepts FarmAnimal.

void printWeight(FarmAnimal animal)

{

cout << animal.weight;

}

int main()

{
MooCow cow;
printWeight(cow);

Object Slicing

For this to work, a MooCow must be converted to
a FarmAnimal

The compiler takes all the FarmAnimal bits and
leaves behind all the MooCow bits!

This is called
void printWeight(FarmAnimal animal)

object slicing ¢

cout << animal.weight;
It’s generally bad. }

int main()

To prevent it, use {

. MooCow cow;
pomters or printWeight(cow);
references instead!

Question

® Pet has a makeNoise
class Pet

(function

public: . .
void makeNoise() Pet’s implementation of

{ | makeNoise() isn’t good
cout << “(nothing)”;

) enough for Cat, so Cat
}i overrides it

class Cat : public Pet Does this code snippet

{ . ,
public: compile? What’s the

void makeNoise() output?

{

cout << “MEOW! "
} Cat animal;

animal .makeNoise();

class Pet

{
public:

void makeNoise()

{

cout << “(silence)”;

}
}i

class Cat : public Pet

{
public:

void makeNoise()

{
cout << “MEOW! "

}

® How about this one!?

Cat* animal = new Cat;
animal->makeNoise();

® ...and this one!?

Pet* animal = new Cat;
animal->makeNoise();

Problem

o C++ uses static type checking (early binding) -
types are checked at compile time, not run-time
(late binding)!

® A major design goal of C++: produce code that runs
as quickly as possible

Pet* animal = new Cat;

® VWhat's happening here: animal->makeNoise () ;

® We have a pointer of type Pet
® Pet has a method called makeNoise
® Therefore, Pet::makeNoise is called

'LI < i{
-k
- :

So then:

class Pet

{
public:
void makeNoise()

{

cout << “(nothing)”;

}
}i

class Cat : public Pet

{
public:
void makeNoise()

{
cout << “MEOW! "

}

Pet* animal = new Cat;
animal->makeNoise();

® The compiler sees animal as

a Pet, instead of a Cat

Therefore Pet::makeNoise()
is getting called instead of
Cat::makeNoise()

How do we tell the
compiler to figure out the
correct version of
makeNoise to call?

Virtual Methods

Shape
virtual method: area()

Triangle
virtual method: area()

Equilateral
no area() method

® Jo do this, we can mark a
method as virtual.

The compiler will use
run-time type

identification to call the
most specific version of
the method that it can!

what version of area() gets called?

Shape* s = new Equilateral;
s—->area();

Virtual: How-to

class Pet

{
public:

virtual void makeNoise()

{

cout << “(nothing)”;

}
}i

class Cat

{
public:

void makeNoise()

{

: public Pet

cout << “MEOW! "

}
}i

® TJo declare a virtual
method, stick the
keyword virtual before
Its return type

This automatically makes
every overridden version
of the method virtual too

Only works in one
direction: marking
Cat::makeNoise as virtual
doesn’t make
Pet::makeNoise virtual!

Virtual Rules

Virtual methods are slightly slower than
non-virtual methods (why?)

Static methods can’t be virtual, and virtual
methods can’t be static

One way to make this a non-issue: make

every base-class method virtual. (why does
this work?)

If in doubt: make your methods virtual

Inheritance

Shape
Shape() Equilateral e;

~Shape()

® Small review: in which order
Triangle are the constructors

Triangle executed!?
~Triangle()
® How about the destructors!?

What would make sense here?

Equilateral
Equilateral()

~Equilateral()

Virtual Destructors

Shape Shape* s = new Equilateral();
Shape()
~Shape() o

delete s;

: ® A destructor is a method like any
Triangle
Triangle other, and the same rules apply

~Triangle() ® Destructors need to be marked

virtual!

® What should happen here!

Equilateral

Equilateral() ® \What does happen, if the destructor
~Equilateral() is not virtual?

The Fix

class Pet

{
public:

virtual ~Pet();

}i

class Cat : public Pet

{
public:

// doesn’t need to be
// marked virtual!
~Cat ();

}i

® When using inheritance,
always make your
destructors virtual!

Again, making a virtual
base class constructor
makes all inherited
destructors also be
virtual 5

-

Overrided Functions

class Car
{
public:
void vroom()
{
cout << “Car

}

}i

class Geo : public Car

{
public:

void vroom()

{

cout << “Geo

}

: :vroom\n”;

: svroom\n”;

® So far we've been
saying that
overrided functions
“hide” their base
class versions

® What would this
code fragment
output!?

Geo prizm;
prizm.vroom() ;

N—L0
SRS N

Overrided Functions

class Car

{
public:

void vroom()

{

}
}i

class Geo

{
public:

void

{

cout << “Car::vroom\n”;

: public Car

vroom()

cout << “Geo::vroom\n”;
base::stuff();

® “Hidden” doesn’t
mean “‘gone”, though!

Sometimes you might
want to call the base
class version of a
function...

You can do that using
the scope resolution
operator (::)

What does this print now!?

Geo prizm;
prizm.vroom();

Some Weird Syntax...

class Car
{
public:
void vroom()
{
cout << “Car

}

}i

class Geo : public Car

{
public:

void vroom()

{

cout << “Geo

}

: :vroom\n”;

: svroom\n”;

You can even do this
from outside a class

Say you want to call
the base class
version of viroom()
from the main
function:

{

}

int main()

Geo prizm;
prizm.base::vroom();

void vroom()

{

cout << “Global Vroom! !\n”;

}

class Car

{
public:
void vroom()

{

cout << “Car::vroom\n”;

}
}i

class Geo : public Car

{
public:

void vroom()

{

cout << “Geo::vroom\n”;
Global vroom()?

Question

® What if we add
another vroom()
function - a global
one!

® Could we call that
from Geo::vroom()?

\{roid vroom() QUEStiOn

cout << “Global Vroom! !\n”";

}

® When used on its
class Car own, :: means ‘‘access
{ the global scope, not
the local scope”

public:
void vroom()

{
Sol ©E AERis gTireem\aT . So, to call the global

} vroom() function, we
use the :: operator to
class Geo : public Car call the containing

{ sCope€e
public:
void vroom()

{

}i

cout << “Geo::vroom\n”;

ssvroom();

A Useless Function

® FEarlier, we saw this
implementation of
public: the makeNoise()

void makeNoise()

‘ function:

cout << “(silence)”;

class Pet

{

}
}i

® |t’s kinda useless.

® |[ts only purpose is to help define an interface: to provide a
function for derived classes to override

® So it’s not important what Pet::makeNoise itself does!

Abstract Methods

e An abstract method is a declaration of a
method, without a definition

® We're telling the compiler:

® This method won’t be defined in this
class, but

® Any usable derived class must implement
this method!

® These are also known as pure virtual
methods

A class with an abstract method is known as
an abstract class

An abstract class can’t be instantiated!

To be usable, all methods have to be
defined. Since abstract classes have
undefined methods (the abstract ones!) they
can’t be instantiated

To be usable, a derived class must override
all abstract methods

Rules

class Pet

{
public:
virtual void makeNoise() = 0;

virtual string getName();
}i

\

® This turns the class into an we declare a method to be

abstract class abstract by tacking “= 0” onto
the declaration

Weird C++ rule: every class
needs to have at least one
“regular” virtual method
when also using abstract
methods!

More Coding

® | et’s play with inheritance!

® Again!

Multiple Inheritance

® Sometimes inheriting from
a single class isn’t enough!

Person ® Say we've got the simple

string name; class hierarchy to the left:
void introduce();

® VWhat do we do when we
want to define a
Teacher j Student 'Il'ea::hmgAssmtant
class!?

void teachClass(); void attendClass(); ® A TeachingAssistant both

void introduce(); void introduce(); teaches and attends classes
string courseName; string courseName;

® No one base class is enough!

string name;

void introduce(); ® We have to make

TeachingAssistant
inherit from both Teacher

and Student!
Teacher

So: our new TA class will

void attendClass(); inherit all the stuff from

void introduce(); both base classes!
string courseName;

void teachClass();
void introduce();

string courseName;)
How would we write an

introduce method that
TeachingAssistant explains what course the
TA teaches, and what
void introduce(); course he/she studies?

String name; How many courseName

void introduce(); : :
variables are there in
TeachingAssistant?

How do we print out the
right version at the right

Teacher

time?
void attendClass();
void introduce();
string courseName; | void TA::introduce()

{

void teachClass();
void introduce();
string courseName;

cout << "I teach: ";

. . cout << (7?)
TeachingAssistant cout << “I study: “;

4
cout << (?)

void introduce();

Multiple Inheritance

class Teacher : public Person
{ // declaration mostly omitted
public:
Teacher(string name);

}i

class Student : public Person
{ // declaration mostly omitted
public:

Student(string name);

}i

class TA :
public Teacher, public Student

{
public:
TA()
Student (name), Teacher (name)
{}
}i

® Doing this is pretty
simple:

® Just add to the list of
classes your class
inherits from

® You may need to add
to the constructor init
list too!

One problem you may have
noticed:

string name; .
void introduce(); ® How many copies of name

does TeachingAssistant have!

Which one do we use?! Does
Teacher it matter?

: void attendClass(); i . s
void teachClass(); Coid introduce()°() IOld TA::introduce()

void introduce(); ri N
: string courseName; “ e
string courseName; & ’ cout << “My name 1s:";

cout << (?)
cout << “I teach: ";
cout << (?)
cout << “I study: “;
cout << (?)

TeachingAssistant

void introduce();

TeachingAssistant is
derived from both
Student and Teacher

Both Student and
Teacher inherited a
name attribute from
Person

Therefore,
TeachingAssistant has
two copies of name!

This might be OK but it
might not: could each
copy of name have a
different value!

Virtual
Inheritance

® The way to solve this: virtual
inheritance

® |f you inherit “virtually” from a

base class, you tell the compiler:

® there must be one instance of
that base class if someone
inherits from the current class

® This is weird, and ugly, but it
solves the problem neatly

how this works:

® Before we had two

string name; copies of name in
void introduce(); TeachingAssistant

Now, Teacher and Student
are inheriting virtually from

Teacher
Person (red arrows)

void attendClass(); So there will be only one
void introduce(); copy of Person in any class

void teachClass();
void introduce();

. . string courseName;
string courseName;

inherited from Teacher and
Student

TeachingAssistant ... aka TeachingAssistant,
only has a single copy of
void introduce(); Person - (therefore, name)

// declarations mostly omitted...
class Person
{

string name;

}i

class Teacher : virtual public Person

{
public:
Teacher(string name);

}i

class Student : virtual public Person

{
public:

Student(string name);

}i

class TA :
public Teacher, public Student
{
public:
TA() :
Student (name), Teacher (name)
{}
}i

Vir;ual
Inheritance

® To inherit virtually, just
stick the keyword
virtual right before
the public

This has nothing to do
with virtual functions!

Why do both Student
and Teacher use virtual
inheritance! Is this
necessary!

Multiple Inheritance

® Many people disagree on the
usefulness of Multiple Inheritance

® Most newer languages don’t support Ml
at all, or only a small subset of it

® |f you find yourself needing to use Ml
a lot, consider redesigning your
classes so you don't!

® Not used nearly as widely as regular
inheritance

