
More
Operator

Stuff

Review - Code!

• Let’s write a simple dynamic array class (not
like one you’d ever write)

• constructor/destructor

• private pointer variable

• member get/set functions

• member length function

• copy constructor

• Remember how the copy constructor
works?

• This works fine when we’re constructing
an object, but how about later? Can we
assign objects to each other?

Question

// construct an Employee
Employee samuel(“Samuel T. Larson”);

// construct sam as a copy of samuel
Employee sam(samuel);

sam = sammy; // does this work?

Yup.

• Turns out that yes, this does work.
• C++ automatically overloads the assignment

operator for you – it defines a function that gets
called when code tries to assign something to your
class

• This default operator does a piecewise assignment –
same as the default copy constructor

• And we can make our own version, too! (Why would
we want to?)

Assignment Operator
Overloading

• The function to overload the operator
looks like this:

• It works almost exactly like the copy
constructor…

• …except this one returns Employee&

Employee& operator=(const Employee& rhs)
{
 // do assignment stuff in here…
}

Assignment Chaining

• Remember: assignments are
done right to left

• The result of b = c needs to
be something that can be
assigned to a

• operator= is the function
handling b = c

• So operator= needs to return
something that can be
assigned to a: the result of b
= c

Employee a, b, c;
a = b = c;

Each time a value gets
assigned to an instance of
Employee, the operator=
function gets called

So:

• What value should the operator= function
return?

• It needs to be the current object for
assignment chaining to work

• We know how to refer to other objects (by
name, by pointer, etc.)

• But how do we refer to the value of the
current instance from within that instance?

Introducing this

• The C++ keyword this solves this problem
• every object gets a pointer called this to its own

address

class cat
{
public:
 cat()
 {
 // same-same
 meow = 189;
 this->meow = 189;
 }
private:
 int meow;
};

• this is of type
const cat* in
this case, and is
not modifiable

• this can only be
used from inside a
class (why?)

So: (again)
• What value should the operator= function

return?
• We need to return the current object (so it

can be assigned again!)
• this gives us a pointer to the current object

Employee& operator=(const Employee& rhs)
{
 return (what?)
}

http://www.squirrelcreek.com/Main.htm
http://www.squirrelcreek.com/Main.htm

Operator Overloading

• In that example we overloaded
(defined for this class) the
assignment operator

• Turns out we can overload all
kinds of operators: +, *, -, *, <<,
>>, and a fair number of others

• This lets us give actions to our
class in other ways than calling
public member functions

anyway, back to…

http://thestrange.buzznet.com/user/photos/?id=2977046
http://thestrange.buzznet.com/user/photos/?id=2977046

Overloadable Operators

• Here’s the operators you can overload:

• You can do all kinds of funky stuff with these.
Usually we just stick to the basics.

+ - * / = < > += -= *= /= << >>
<<= >>= == != <= >= ++ -- % & ^ ! |
~ &= ^= |= && || %= [] () , -> * ->
new delete new[] delete[]

Operators are functions!

• We overloaded the = operator with this
function:

• Overloaded operators are just regular C++
functions! Not much special about them.

• This is one of the rare times that a function
name can be “non-standard” though!

Employee& operator=(const Employee& rhs)
{
 return (what?)
}

For example…
• Say we’ve got a complex number class

called Complex
• It’s natural for us to want to do things like

this:

• Operator overloading lets us define how the
+ operator works for our Complex class

Complex a, b;
Complex c = a + b;

Side Note:
• According to some schools of thought, operator

overloading is a bit dangerous
• The reason: you can’t see what you’re getting

when you read the code:
• In this code, there are no possible side-effects:

• But with our own classes, it’s not easy to tell what
the overloaded operators actually do.

int a = 10, b = 5;
a += b;

myArray a, b;
a += b;

Moral of the Story

• To write good code:
• Overload operators should mimic the

functions of their built-in counterparts
• If you want to do anything else, write

an appropriately-named member
function to do it for you

Implementations
class Complex
{
public:
 Complex();

 Complex(const Complex& c)
 {
 // this needs an implementation
 }

 Complex& operator=(const Complex& c)
 {
 // so does this
 }

private:
 float real, imag;
};

• How would we
implement the
copy constructor
and operator=?

• Do we really need
both of them?

A shortcut

• We can often implement one function by using
another (we did this with constructors,
remember?)

• The copy constructor and operator= are very
similar. Rather than implementing both of them,
you can just implement the operator=.

• What would the copy constructor look like?

Complex(const Complex& c)
{
 // what does this look like?
}

Why does this matter?

• Partly because it makes things easier.
• Partly because… let’s take a look at the list of

overloadable operators again!

• Aka, if you’ve overloaded +, you’ll probably want to
overload += as well.

+ - * / = < > += -= *= /= << >>
<<= >>= == != <= >= ++ -- % & ^ ! |
~ &= ^= |= && || %= [] () , -> * ->
new delete new[] delete[]

Another example

• Here we’re
overloading the
equality (==)
operator

• Will these work?

class Complex
{
public:
 Complex();

 bool operator==(const Complex& c)
 {
 if(real == c.real)
 return true;
 else
 return false;
 }

private:
 float real, imag;
};

Complex p, q;

if(p == q)
 ; // do something

if(p != q)
 ; // do something else

Nope.

• Turns out that ==
and != are different
operators

• If you want to use !=,
you have to define it

Complex p, q;

if(p == q)
 ; // do something

if(p != q)
 ; // do something else

Cpptest.cpp: error C2676: binary '!=' : 'Complex' does not define this
operator or a conversion to a type acceptable to the predefined operator

This is the error that Visual C++ generates:

bool operator!=(const Complex& c)
{
 // how do we implement this?
}

Another operator: multiplication

• Let’s look at the vector3D
class again:

• Based on what we’ve seen
so far, what would the
operator* function look
like?

class Vector3D
{
public:
 Vector3D();

private:
 float x, y, z;
};

Overloading the Overloads

• We defined an operator* function that
accepts a Vector3D, but we can make it
accept other types too

• We can overload the overloaded operators!

class Vector3D
{
public:
 Vector3D();
 Vector3D operator*(Vector3D& rhs);

private:
 float x, y, z;
};

• How do define
another version
of this function
that accepts a
single float?

Random
Overloading Stuff

• Assuming the
operators are
correctly
implemented,
can we do this?

• Why or why not?

Vector3D* vec = new Vector3D;
Vec = vec * 4;

Stuff You Can’t Do:

• Overload these operators: . .* :: ?:
• Overload operators for primitive types (int,

float, etc.)
• Create new operators! You’re stuck with the

ones that C++ understands.
• Change the arity of an operator (make a

binary operator unary, etc)

• Change the precedence of an operator.

Question

• Say we’ve got a very
simple doStuff function…

• Can we do this?

• Why does this work?

float bob = 5.2;
doStuff(bob);

void doStuff(int x)
{
 cout << x << endl;
}

Question

• Say we’ve got a very
simple Complex class…

• Can we do this?

• Why would this not work?

Complex number;
char whatever[100];
strcpy(whatever, number);

class Complex
{
public:
 Complex();

private:
 float real, imag;
};

Type Conversions

• Remember this stuff?

• Whether explicitly or implicitly, C++ will convert
types when it can

• We can add this functionality to classes, too!

float bob = 5.2;

// implicit type conversion
doStuff(bob);

// explicit type conversion
doStuff((int)bob);

Conversion Operators

• The operator int()
function automatically
gets called when you
try to convert the code
to an integer

• This means you can
use Complex
anywhere you’d use
an integer – Complex
gets automatically
converted to an int

class Complex
{
public:
 Complex();
 operator int();

private:
 float real, imag;
};

Complex::operator int()
{
 return (int)real;
}

Anatomy of a Conversion Operator

Complex::operator int()
{
 return (int)real;
}

no return type (why?)

operator keyword

type this function
converts to

parenthesis close
out the function

signature

Finish the Example

• Let’s say we wanted to
do a string conversion
operator:

• How would we do that?

class Complex
{
public:
 Complex();
 operator ???();

private:
 float real, imag;
};

Complex::operator ??()
{
 return ??;
}

Complex number;
cout << number << endl;

// this should print out
// the word “hello”

Question

• Say we had a Node class:

• …but all the node manipulation was done in
a separate class called LinkedList.

• Would LinkedList be able to access the
next variable in an instance of Node?

class Node
{
 private:
 int data;
 Node* next;
};

Sometimes you just need a
friend

• Sometimes you want external code
(code that’s not in the class) to be able to
access private class variables!

• … but not anyone else.
• This can be done using the C++ friend

keyword.

How It All Happens

• This is done by adding the “friend class
ClassName” within the class:

• Now LinkedList can access all variables in
an instance of Node as if they were public.

class Node
{
 friend class LinkedList;

 private:
 int data;
 Node* next;
};

void LinkedList::doStuff()
{
 Node* ptr = head;

 // used to be illegal
 // now it’s legal!
 ptr = ptr->next;
}

Friend Declarations

• Friend declarations can be put anywhere in
the class – public section, private section,
top, bottom, whatever

• The classes that you declare to be friends
don’t actually have to exist…
– so watch for typos!

• A class can have lots of friends!

class Node
{
 friend class LinkedList;

 private: // ... etc
};

Friend Functions

• Another option is to
declare a single
function to be a friend

• Here, the function
void breakStuff() is
allowed private access
to Node

• How could we make a
function in another
class be a friend?

class Node
{
 friend void breakStuff
();

 private:
 int data;
 Node* next;
};

void breakStuff()
{
 Node* ptr = head;

 // mwahahahahaha!!!
 delete ptr;
 ptr = NULL;
}

Friend Functions
class Node
{
 friend void breakStuff(int x, float q);

 private:
 int data;
 Node* next;
};

to make this work we have to put
the entire function signature
here!

• How would we make a member function of
another class a friend? (Not the entire class
– just a single member function)

Friendliness

• Is friend a good idea or a bad idea?

• Does friend break the idea of encapsulation?

• When and why might you want to do this?

How to Remember This:

In C++, all
your friends
can see your
privates.

Static: Background

• Here we have 6
different instances
of the class Dog.

• Each instance has
its own set of
member variables.

• So there are 6
different age
variables – one per
instance.

class Dog
{
 private:
 char name[50];
 int age;
};

int main()
{
 Dog gus;
 Dog pepper;
 Dog bitsy;
 Dog charlie;
 Dog toby;
 Dog checkers;
}

The Problem

• What if we wanted to keep a count of the
number of instances of Dog in the entire
program?

• Where would it make most sense to keep
that counter?
– A member variable in Dog?
– A global variable?

• The ideal would be a counter that belongs to
the entire class – not just a single instance
of it.

Introducing static

• This can be done using the C++ keyword
static.

• static variables are shared amongst all
instances of the class – no one instance
gets to “own” a static variable!

• Best way to think of a static: the lifetime of a
global variable, but the access/scope of a
class member variable (what’s the
difference?)

Declaring Static Variables

• static variables are
weird – we declare
them inside the class,
we define them
outside the class

• Think of them like a
function – the
declaration is only a
prototype!

• It still needs to be
defined in the global
scope (why?)

class Dog
{
 private:
 char name[50];
 int age;

 // counter declaration
 static int counter;
};

// actual counter definition
int Dog::counter = 0;

So…

• There is a single
counter variable in this
program…

• To which of the 6 Dogs
does counter “belong”?

• Which of them can
access it?

• What do you think is the
syntax for doing so?
(inside the class)

class Dog
{
 private:
 char name[50];
 int age;

 // counter declaration
 static int counter;
};

// actual counter definition
int Dog::counter = 0;

int main()
{
 Dog gus;
 Dog pepper;
 Dog bitsy;
 Dog charlie;
 Dog toby;
 Dog checkers;
}

Accessing
Static Variables

• Static variables can be
accessed exactly like
regular variables!

• In addition, access
specifiers (public,
private, etc.) work the
same way they do with
non-static variables

class Dog
{
 public:
 Dog()
 {
 counter++;
 }

 ~Dog()
 {
 counter--;
 }

 private:
 char name[50];
 int age;

 // counter declaration
 static int counter;
};

// actual counter definition
int Dog::counter = 0;

Meanwhile, Outside the Class…

• As long as counter is
public, it can be
accessed outside the
class as if it were a
non-static variable

• What happens if there
are no instances of Dog
we can use to access
counter?

int main()
{
 Dog gus;
 Dog pepper;
 Dog bitsy;
 cout << bitsy.counter;

 Dog charlie;
 Dog toby;
 {
 Dog checkers;
 cout << gus.counter;
 }

 cout << toby.counter;
}

Viva la variables estáticas!!

• Static member variables always exist – whether
the class has ever been instantiated or not!

• We can access them using the scope resolution
operator:

• This works because counter belongs to the class
Dog – not any one instance of Dog!

int main()
{
 cout << Dog::counter << endl;
}

Static Methods
• Methods (member functions) can also be

static!
• Static methods:

– don’t belong to any particular instance of the
class

– can be called even if there are no instances of
the class!

– can not access any non-static data in the class

Broke

• In this example program,
getCount() tries to access
both age and counter

• If we were to do this:

• … which instance of age
would the function
access?

• (This doesn’t compile, by
the way!)

class Dog
{
 public:
 static int getCount()

 private:
 char name[50];
 int age;

 // counter declaration
 static int counter;
};

int Dog::getCount()
{
 age++;
 return counter;
}

// actual counter definition
int Dog::counter = 0;

cout << Dog::getCount();

The Rules:

• Can static methods access:
– Static member variables? - Yes!

– Non-static member variables? - No!

• Can regular methods access:
– Static member variables? - Yes!

• but there’s only one copy to be shared amongst all instances
of the class

– Non-static member variables? - Yes!
• This is the normal case

Non-Class Static Variables

• Regular variables can
be static too - not just
class member variables

• Just like class static
variables, regular static
variables have:
– global lifetime
– local scope

• Static variables are only
initialized once

void test()
{

static int bob = 1;
cout << bob++ << endl;

}

int main()
{

test();
test();
test();
test();
test();

}

