

Review - Code!

® | et’s write a simple dynamic array class (not
like one you'd ever write)

constructor/destructor
private pointer variable
member get/set functions
member length function

copy constructor

Question

 Remember how the copy constructor
works?

// construct an Employee
Employee samuel(“Samuel T. Larson”);

// construct sam as a copy of samuel
Employee sam(samuel) ;

» This works fine when we're constructing
an object, but how about later? Can we

assign objects to each other?

sam = sammy; // does this work?

Turns out that yes, this does work.
C++ automatically overloads the assignment

operator for you — it defines a function that gets
called when code tries to assign something to your
class

This default operator does a piecewise assignment —
same as the default copy constructor

And we can make our own version, too! (Why would
we want to?)

Assignment Operator
Overloading

* The function to overload the operator
looks like this:

Employeeé& operator=(const Employee& rhs)
{

// do assignment stuff in here..

}

* |t works almost exactly like the copy
constructor...

 ...except this one returns Employee&

Assignment Chaining

Remember: assignments are
done right to left

The result of b = ¢ needs to
be something that can be
assigned to a

operator= is the function
handling b =c

So operator= needs to return
something that can be

assigned to a: the result of b
=cC

Employee a, b, c;
a=>b=c;

N\

Each time a value gets
assigned to an instance of
Employee, the operator=
function gets called

So:

What value should the operator= function
return?

It needs to be the current object for
assignment chaining to work

We know how to refer to other objects (by
name, by pointer, etc.)

But how do we refer to the value of the
current instance from within that instance?

Introducing this

 The C++ keyword this solves this problem
* every object gets a pointer called this to its own

address

class cat
{
public:
cat ()
{
// same-same
meow = 189;
this->meow = 189;
}
private:
int meow;

};

* this is of type
const cat* In

this case, and is
not modifiable

* this can only be
used from inside a
class (why?)

So: (again)

* What value should the operator= function
return?

* We need to return the current object (so it
can be assigned again!)

 this gives us a pointer to the current object

Employeeé& operator=(const Employee& rhs)

{

return (what?)

}

http://www.squirrelcreek.com/Main.htm
http://www.squirrelcreek.com/Main.htm

anyway, back to...

Operator Overloading

In that example we overloaded
(defined for this class) the
assignment operator

Turns out we can overload all

kinds of operators: +, *, -, ¥, <<,
>> and a fair number of others
This lets us give actions to our

class in other ways than calling
public member functions

http://thestrange.buzznet.com/user/photos/?id=2977046
http://thestrange.buzznet.com/user/photos/?id=2977046

Overloadable Operators

Here's the operators you can overload:

+ - * [/ = < > 4= = F= [= << >>

<<= >>= == I|= <= >= ++ - % & M | |
~ &= = = &l %= 0 0, > " -
new delete new[] deletel]

>

You can do all kinds of funky stuff with these.
Usually we just stick to the basics.

Operators are functions!

* We overloaded the = operator with this
function:

Employee& operator=(const Employeeé& rhs)

{

return (what?)

}

* Overloaded operators are just regular C++
functions! Not much special about them.

* This is one of the rare times that a function
name can be “non-standard” though!

For example...

« Say we've got a complex number class
called Complex

* |It's natural for us to want to do things like
this:

Complex a, b;
Complex ¢ = a + b;

* Operator overloading lets us define how the
+ operator works for our Complex class

Side Note:

According to some schools of thought, operator
overloading is a bit dangerous

The reason: you can’'t see what you're getting
when you read the code:

In this code, there are no possible side-effects:

int a = 10, b = 5;
a += b;

But with our own classes, it's not easy to tell what
the overloaded operators actually do.

myArray a, b;
a += b;

Moral of the Story

* To write good code:

* Overload operators should mimic the
functions of their built-in counterparts

* |f you want to do anything else, write
an appropriately-named member
function to do it for you

Implementations

class Complex

{
public:
Complex () ;

Complex(const Complexé& c)

{

// this needs an implementation

}

Complex& operator=(const Complex& c)

{
// so does this

}

private:
float real, imag;

};

both of them?

How would we
Implement the
copy constructor
and operator="?

Do we really need

A shortcut

* We can often implement one function by using
another (we did this with constructors,
remember?)

* The copy constructor and operator= are very
similar. Rather than implementing both of them,
you can just implement the operator=.

* What would the copy constructor look like?

Complex(const Complexé& c)

{
// what does this look like?

}

Why does this matter?

Partly because it makes things easier.

Partly because... let’'s take a look at the list of
overloadable operators again!

= < > 4= = *= [= << >>
= <= >= ++ - % & M | |
~ &= M= = && || %= 0 O, > * >
new delete new[] deletel]

Aka, If you've overloaded +, you'll probably want to
overload += as well.

Another example

class Complex

{
public:
Complex () ;

bool operator==(const Complex& c)

{

if(real c.real)
return true;

else
return false;

}

private:
float real, imag;

* Here we're
overloading the
equality (==)
operator

» Will these work?

Complex p, g

if(p == gq)
; // do something

if(p '=q)
// do something else

°
14

Nope.

* TumS OUt that —— Complex p, q;
and != are different if(p == q)
OperatOrS ; // do something

* If you want to use I=, IR
you have tO def|ne |t ; // do something else

This is the error that Visual C++ generates:

bool operator!=(const Complex& c)

{

// how do we implement this?

}

Another operator: multiplication

 Let’'s look at the vector3D
class again:

class Vector3D

{
public:
Vector3D() ;

private:
float x, y, z;

};

« Based on what we've seen
so far, what would the
operator* function look

like?

Overloading the Overloads

We defined an operator* function that
accepts a Vector3D, but we can make it
accept other types too

We can overload the overloaded operators!

class Vector3D

(» How do define

public: .
Vector3D () ; another version
Vector3D operator*(Vector3D& rhs); Of thlS funCthn

private: that aCCeptS a

,, oAy single float?

Random
Overloading Stuff

* Assuming the
operators are
correctly
implemented,
can we do this?

Vector3D* vec = new Vector3D;
Vec = vec * 4;

 Why or why not?

Stuff You Can’t Do:

Overload these operators:

Overload operators for primitive types (int,
float, etc.)

Create new operators! You're stuck with the
ones that C++ understands.

Change the arity of an operator (make a
binary operator unary, etc)

Change the precedence of an operator.

void doStuff(int x)

{
cout << x << endl;

}

Question

Say we've got a very
simple doStuff function...

Can we do this?

float bob = 5.2;
doStuff(bob) ;

Why does this work?

Question

class Complex ¢ Say We,Ve gOt a Very
{

public: simple Complex class...

Complex() ;

private:
float real, imag;

e Can we do this?

Complex number;
char whatever[100];
strcpy (whatever, number) ;

Why would this not work"?

Type Conversions

« Remember this stuff?

float bob = 5.2;

// implicit type conversion
doStuff(bob) ;

// explicit type conversion
doStuff((int)bob);

* Whether explicitly or implicitly, C++ will convert
types when it can

* We can add this functionality to classes, too!

Conversion Operators

class Complex

{

public:
Complex () ;
operator int() ;

private:
float real, imag;

};

Complex: :operator int ()

{

return (int)real;

}

* The operator int()
function automatically
gets called when you
try to convert the code
to an integer

This means you can
use Complex
anywhere you'd use
an integer — Complex
gets automatically
converted to an int

Anatomy of a Conversion Operator

no return type (why?) type this function

converts to
\ operator keyword /

Complex: :operator int ()

{

return (int)real;

\,

parenthesis close
out the function
signature

Finish the Example

class Complex

{

public:
Complex () ;
operator ??7?();

private:
float real, imag;

};

Complex: :operator ??()

{

return ?7?;

}

» Let's say we wanted to
do a string conversion
operator:

Complex number;
cout << number << endl;

// this should print out
// the word “hello”

* How would we do that?

Question

- Say we had a Node class: ~7#¢

class Node

{

private:
int data;
Node* next;

};

» ...but all the node manipulation was done in
a separate class called LinkedList.

« Would LinkedList be able to access the
next variable in an instance of Node?

Sometimes you just need a
friend

« Sometimes you want external code
(code that’s not in the class) to be able to
access private class variables!

... but not anyone else.

* This can be done using the C++ friend
keyword.

_ Row It All Happens

* This is done by adding the “friend class
ClassName” within the class:

class Node void LinkedList: :doStuff ()
{ {
friend class LinkedList; Node* ptr = head;
private:
int data;
Node* next;

}; }

// used to be illegal
// now it’s legal!
ptr = ptr->next;

* Now LinkedList can access all variables In
an instance of Node as if they were public.

Friend Declarations

class Node

{

friend class LinkedList;

private: // ... etc

};

* Friend declarations can be put anywhere In
the class — public section, private section,
top, bottom, whatever

* The classes that you declare to be friends
don’t actually have to exist...

— so watch for typos!
A class can have lots of friends!

Friend Functions

class Node

{ * Another option is to
friend void breakStuff declare a Single

function to be a friend
private:

int data; Here, the function
SeEls ez void breakStuff () IS

allowed private access
void breakStuff () to Node

{
Node* ptr = head; How could we make a
1 it function in another
delete ptr; class be a friend?

ptr = NULL;

()

};

Friend Functions

class Node

{
friend void breakStuff(int x, float gq);

private:
int data;
Node* next;

to make this work we have to put
the entire function signature
here!
« How would we make a member function of
another class a friend? (Not the entire class

— just a single member function)

Friendliness

® |s friend a good idea or a bad idea!?

® Does friend break the idea of encapsulation?

® When and why might you want to do this?

How_ to Remember This:

Qﬁ't.}

g
In C++, all
L OX »
. e your £friends

N | can see your
privates.

Static: Background

c{:lass Dog « Here we have 6
N different instances
char name[50]; Of the CIaSS Dog.

int age;

}; Each instance has
_ _ its own set of
e a0 member variables.

Dog gus;
Dog pepper; So there are 6

Dog bitsy; different age

Dog charlie; .
Dog toby: variables — one per

Dog checkers; Instance.

The Problem \«‘

* What if we wanted to keep a count of the
number of instances of bog Iin the entire
program?

* Where would it make most sense to keep
that counter?

— A member variable in pog?
— A global variable?

* The ideal would be a counter that belongs to
the entire class — not just a single instance
of it.

Introducing static

£ —

* This can be done using the C++ keyword
static.

static variables are shared amongst all
instances of the class — no one instance
gets to "own” a static variable!

Best way to think of a static: the lifetime of a
global variable, but the access/scope of a
class member variable (what's the
difference?)

Declaring Static Variables

class Dog
{
private:
char name[50];
int age;

// counter declaration
static int counter;

};

// actual counter definition
int Dog: :counter = 0;

e static variables are
weird — we declare
them inside the class,
we define them
outside the class

Think of them like a
function — the
declaration is only a
prototype!

It still needs to be
defined in the global
scope (why?)

class Dog
{
private:
char name[50];
int age;

// counter declaration
static int counter;

};

// actual counter definition
int Dog::counter = 0;

int main ()

{
Dog gus;
Dog pepper;
Dog bitsy;
Dog charlie;
Dog toby;
Dog checkers;

So...

There is a single
counter variable in this
program...

To which of the 6 Dogs
does counter “belong™?

Which of them can
access it?

What do you think is the
syntax for doing so?
(inside the class)

Accessing
Static Variables

« Static variables can be
accessed exactly like
regular variables!

In addition, access
specifiers (public,
private, etc.) work the
same way they do with
non-static variables

class Dog
{
public:
Dog ()
{

counter++;

}

~Dog ()
{

counter—--;

}

private:
char name[50];
int age;

// counter declaration
static int counter;

};

// actual counter definition
int Dog::counter = 0;

Meanwhile, Outside the Class...

int main () * Aslong as counter IS
- , public, it can be
Oog gus, .
Dog pepper; accessed outside the
DIEig sy class as if it were a

cout << bitsy.counter;]]
non-static variable

Dog charlie;
Dog toby;

{ :
Dog checkers; What happens iIf there
cout << gus.counter; are no instances of pog

we can use to access
counter?

}

cout << toby.counter;

Viva la variables estaticas!!

« Static member variables always exist — whether
the class has ever been instantiated or not!

* We can access them using the scope resolution
operator:

int main ()

{
cout << Dog: :counter << endl;

}

* This works because counter belongs to the class
Dog — Not any one instance of pog!

Static Methods

* Methods (member functions) can also be
static!

o Static methods:

— don’t belong to any particular instance of the
class

— can be called even if there are no instances of
the class!

— can not access any non-static data in the class

Broke

In this example program,
getcount () tries to access
both age and counter

If we were to do this:

cout << Dog: :getCount() ;

... WNICh InStance Or age
would the function
access?

(This doesn’t compile, by
the way!)

class Dog
{
public:
static int getCount ()

private:
char name[50];
int age;

// counter declaration
static int counter;

};

int Dog: :getCount ()

{
age++;
return counter;

}

// actual counter definition
int Dog::counter = 0;

The Rules:

 (Can static methods access:
— Static member variables? - Yes!
— Non-static member variables? - No!

« Can regular methods access:

— Static member variables? - Yes!/

« but there’s only one copy to be shared amongst all instances
of the class

— Non-static member variables? - Yes!/
 This is the normal case

Non-Class Static Variables

* Regular variables can ore festl)
be static too - notjust | IECEN L
class member variables |?

int main|()

o Just like class static {
variables, regular static et)

test () ;

variables have: est();
— global lifetime test () ;
— local scope

o Static variables are only
initialized once

