
constructors
&

destructors
&

more!!!

Class Review
• What is encapsulation?

• In C++, how is a struct different than a class?

• How do you declare member functions in a
class? How do you define them?

• What’s the syntax for calling those methods?

• What happens when we mark a method as
public? A member variable? How about
private?

review - Fun
With Code!

• Let’s write a circle
class with:

• a radius

• get/set member
functions

• methods to
calculate area and
circumference

Question

• So if a variable is
declared private (like
alpha and beta)...

• Then can outside code
- like main() - initialize
it?

• If not, how does it ever
get initialized?

class Data
{
public:

int getAlpha();

private:
int alpha;
int beta;

};

Constructors

• This kind of initialization happens through a
constructor

• A constructor is a special class method that
is run when the object is first instantiated

• Purpose of a constructor: to initialize the
object, setup any dynamic memory, etc.

Constructors

class Data
{
public:

Data();
Data(int a, int b);

int getAlpha();

private:
int alpha;
int beta;

};

constructors have:

The same name as
the class (aka Data)

no return type

Note that constructors
can be overloaded too -
You can have as many constructors as you need, as long as
each one has a unique signature

Constructors

• A constructor with no
parameters is called a
default constructor. That lets
you do this:

class Data
{
public:

Data();
Data(int a, int b);

int getAlpha();

private:
int alpha;
int beta;

};

Data d;

• The other constructor allows
you to do this:

Data d(4,5);

Default Constructors
• You aren’t required to define any constructors (we didn’t

in the last class!)

• If you don’t define any constructors, C++ will define an
empty constructor for you - it doesn’t actually do
anything

• Once you define any constructor then C++ stops giving
you the empty one for free

class BZisaFoo
{
public:

BZisaFoo(int a);
};

// this will not compile
BZisaFoo correct;

Default Parameters

• Constructors can have default parameters too

• Like any other C++ function, you have to make
sure that constructors aren’t ambiguous!

class Circle
{
public:

Circle();
Circle(float radius = 1.0);

};
Circle c;

which constructor
would this use?

Destructors
• Constructors are called

when an object is
created...

• A destructor is called
when the object is
deleted.

• A destructor has no
return value, and is
named after the class, but
with a tilde (~) at the
beginning.

class speaker
{
public:

speaker();
~speaker();

};

To Summarize...

• A constructor is a special function
thatis called when an object is
created

• A destructor is a special function that
is called when an object is destroyed

• when the object is manually
deleted (via delete)

• or, when the object goes out of
scope

{
Data d;
...

}

default
constructor
is called

d goes out
of scope;
destructor
is called

Question
• What’s wrong with the following snippet of

code:

class Circle
{

int Circle();
int Circle(float radius);

};

http://www.eecs.harvard.edu/~yaz/gallery/Squirrels1997q1/sp97_021.jpg
http://www.eecs.harvard.edu/~yaz/gallery/Squirrels1997q1/sp97_021.jpg

Quizlet
#include <iostream>
using namespace std;

class printer
{
public:

printer()
{

cout << “CREATE”
 << endl;

}

~printer()
{

cout << “DESTROY”
 << endl;

}
};

int main()
{

printer a[5];
return 0;

}

• Is this valid code?

• If not, what’s wrong
with it?

• What would the
output be if it worked
properly?

introducing const
• Defining good interfaces also

can protect you from your own
mistakes

• For example... accessor methods
that get variables can be marked
as read-only, so the compiler will
generate an error if that method
tries to modify anything in the
class

• This is done with C++ keyword
const, which has been sadly
neglected until now

class time
{
public:
 int hour() const;

void setHour();

private:
int tHour;
int tMinute;
int tSecond;

};

int time::hour() const
{

// this is an error!
tSecond = 10;

}

class time
{
public:
 int hour() const;

void setHour();

private:
int tHour;
int tMinute;
int tSecond;

};

int time::hour() const
{

// this is an error!
tSecond = 10;

}

const methods
The keyword const
comes after the method
name - think of it as part
of the function name

It also has to be there in
the function definition

Since hour() is marked
const, it can't modify
anything in the class without
causing a compiler error.

int time::hour() const
{

return tHour;
}

const methodsint global = 42;

void changeGlobal()
{

global++;
}

class time
{
public:
 int hour() const;

void setHour(int h)
{

tHour = h;
}

private:
int tHour;
int tMinute;
int tSecond;

};

int time::hour() const
{

changeGlobal();
return tHour;

}

int time::hour() const
{

setHour(11);
return tHour;

}

Which of
these
versions of
the hour()
method will
compile?

const
parameters

• const is especially useful
for references

• Pass-by-reference is
efficient, but leaves
parameters open to getting
changed in ways you might
not expect

• If the function accepts a
const reference, you have
some assurance that
parameters will remain
unchanged!

struct bigData { ... };

int sneakyFunc(bigData& b)
{
 b.count++;

return b.number*3;
}

int main()
{

bigData data;
sneakyFunc(data);

}

we can change sneakyfunc to:
int sneakyFunc(const bigData& b)

Then it can’t change any values
inside b, because the parameter is
marked const. By adding const we
ensure b remains unchanged.

... and finally ...
• There’s the const variable. Useful for things

like mathematical constants:

const float pi = 3.14159265;

• Any variable can be
declared const; once
it is initialized, it
can’t be changed.

Problems with
Pointers

• Problems with pointers:
– What are they pointing to? Can you be sure it’s

anything useful?
– Dereferencing a NULL pointer causes problems
– Dereferencing a “wrong” pointer also causes

problems
– What happens with uninitialized pointers?
– All that funny syntax to deal with!

Introducing References!
• References are a C++ feature to deal with

some of those issues
• A reference variable links to another

variable:

int normalVariable = 42;
int& reference = normalVariable;

cout << normalVariable << endl;
cout << reference << endl;

Here, reference is linked to normalVariable! reference doesn’t
have its own memory location – it just uses normalVariable’s

Declaring Reference Variables
• A reference variable is declared by sticking

an ampersand (&) after the type:

• The same rules apply as for pointers: the “&”
only applies to the first name to follow it

• In this example, “a” is a reference – b is not a
reference, but instead a copy of bob

int normalVariable = 42;
int& reference = normalVariable;

int bob = 42;
int& a = bob, b = bob;

More Reference Declaration Stuff
• Also like pointers, the spacing around the &

doesn’t matter:

• There can be an unlimited number of
references to a “normal” variable:

int &a = bob; // same-same
int& b = bob;

int normalVariable = 42;
int& a = normalVariable;
int& b = normalVariable;
int& c = normalVariable;

Using Reference Variables
• There is no difference between reference

variables and regular variables when it
comes to usage!

int normalVariable = 42;
int& reference = normalVariable;

reference++;
normalVariable++;

Reference Rules

• A reference variable:
– must be initialized to another variable
– can’t be changed after initialization

• there’s no syntax for doing this!

– can never be NULL
• … so no need to worry about dereferencing a NULL

pointer

• Why can a reference never be NULL?

Things to Remember…

• Remember: pointers contain an address!
– There’s a difference between changing the

pointer’s address and changing the value of
what it points to

• Reference variables hide this from you
– With a reference, you can’t change the address

or what it points to (no pointer arithmetic)
– You can think of a reference variable as another

way to access whatever variable it links to

Not Exactly New

• We’ve seen reference variables before:

• So now that you know what a reference is,
what’s actually going on here?

void swap(int& a, int& b)
{
 int temp = a;
 a = b;
 b = temp;
}

Returning References

• A reference is a type (just like any other variable)
and can be returned from a function:

• This is valid syntax, but it has a problem – what do
we need to be careful of when returning a
reference?

int& exampleFunction()
{
 int variable = 10;
 return variable;
}

So…

• What’s good about references?
• What’s not so good about

references?
• When would you use a reference ?
• When would you use a pointer?

• How does const come in handy
when we’re dealing with references?

Copying Classes

class Square
{
public:

Square();
Square(int, int, int, int);
int area();

private:
int x, y, w, h;

};

Let’s say we have an
instance of the Square
class:

Square ted;

And we want to copy all its data into a new Square
instance that we’re creating. Can we do this?

Square bill(ted);

Sure we can!
• C++ automatically defines a copy constructor

for each class.

• That copy constructor copies each element of the
class individually, by value, into the new class

class String
{
public:

String(char* s);
private:

// dynamically allocated
char* str;

};

• This is often fine,
but not always

• Why would we not
want to do this
with this String
class?

Copy Constructors
• We can also define our own copy constructor. It

looks like this:

class String
{
public:

String(char* s);
String(const String& s);

private:

// dynamically allocated
char* str;

};

The copy constructor
accepts a const
reference.

In this class the copy
constructor would
allocate memory
before copying.

• This copy constructor replaces the default C++ one.

Using Multiple Files

• Most programs have too much code to fit in
a single source file

• So how do we separate code into multiple
source files?

• We can do this because there’s usually a
difference between declaration and definition

Header Files

• We use header files to contain declarations
of stuff: classes and functions, mainly

• Definitions can go in a separate source file

• Any source file that includes the header file
can use anything declared in that header

• Each source file is compiled into a separate
binary “object file”; they all get linked
together in a final linking stage

Example! Example!

#include “func.h”

int main()
{

func();
return 0;

}

#include <stdio.h>
#include “func.h”

void func()
{

printf(“hi!\n”);
}

void func();

main.cpp func.cpp

func.h

Note that when we’re #including
header files we’ve made, instead of
“standard” ones, we use quotes in
our include statement instead of <>
brackets

Other Header Stuff

• In the “C++ is dumb”
category...

• Sometimes you’ll see stuff
like this in a header file to
make sure that the header
only gets included once

• If a header is included more
than once, the compiler will
complain that “foo” is defined
more than once

#ifndef _STRUCTS_H_
#define _STRUCTS_H_

struct foo
{
};

#endif

#pragma once

struct foo
{
};

- or -
structs.h

structs.h

Code!

• Let’s write a simple dynamic array class (not
like one you’d ever write)

• constructor/destructor

• private pointer variable

• member get/set functions

• member length function

• copy constructor

• Remember how the copy constructor
works?

• This works fine when we’re constructing
an object, but how about later? Can we
assign objects to each other?

Question

// construct an Employee
Employee samuel(“Samuel T. Larson”);

// construct sam as a copy of samuel
Employee sam(samuel);

sam = sammy; // does this work?

Yup.

• Turns out that yes, this does work.
• C++ automatically overloads the assignment

operator for you – it defines a function that gets
called when code tries to assign something to your
class

• This default operator does a piecewise assignment –
same as the default copy constructor

• And we can make our own version, too! (Why would
we want to?)

Assignment Operator
Overloading

• The function to overload the operator
looks like this:

• It works almost exactly like the copy
constructor…

• …except this one returns Employee&

Employee& operator=(const Employee& rhs)
{
 // do assignment stuff in here…
}

Assignment Chaining

• Remember: assignments are
done right to left

• The result of b = c needs to
be something that can be
assigned to a

• operator= is the function
handling b = c

• So operator= needs to return
something that can be
assigned to a: the result of b
= c

Employee a, b, c;
a = b = c;

Each time a value gets
assigned to an instance of
Employee, the operator=
function gets called

So:

• What value should the operator= function
return?

• It needs to be the current object for
assignment chaining to work

• We know how to refer to other objects (by
name, by pointer, etc.)

• But how do we refer to the value of the
current instance from within that instance?

Introducing this

• The C++ keyword this solves this problem
• every object gets a pointer called this to its own

address

class cat
{
public:
 cat()
 {
 // same-same
 meow = 189;
 this->meow = 189;
 }
private:
 int meow;
};

• this is of type
const cat* in
this case, and is
not modifiable

• this can only be
used from inside a
class (why?)

So: (again)
• What value should the operator= function

return?
• We need to return the current object (so it

can be assigned again!)
• this gives us a pointer to the current object

Employee& operator=(const Employee& rhs)
{
 return (what?)
}

http://www.squirrelcreek.com/Main.htm
http://www.squirrelcreek.com/Main.htm

Operator Overloading

• In that example we overloaded
(defined for this class) the
assignment operator

• Turns out we can overload all
kinds of operators: +, *, -, *, <<,
>>, and a fair number of others

• This lets us give actions to our
class in other ways than calling
public member functions

anyway, back to…

http://thestrange.buzznet.com/user/photos/?id=2977046
http://thestrange.buzznet.com/user/photos/?id=2977046

Overloadable Operators

• Here’s the operators you can overload:

• You can do all kinds of funky stuff with these.
Usually we just stick to the basics.

+ - * / = < > += -= *= /= << >>
<<= >>= == != <= >= ++ -- % & ^ ! |
~ &= ^= |= && || %= [] () , -> * ->
new delete new[] delete[]

Operators are functions!

• We overloaded the = operator with this
function:

• Overloaded operators are just regular C++
functions! Not much special about them.

• This is one of the rare times that a function
name can be “non-standard” though!

Employee& operator=(const Employee& rhs)
{
 return (what?)
}

For example…
• Say we’ve got a complex number class

called Complex
• It’s natural for us to want to do things like

this:

• Operator overloading lets us define how the
+ operator works for our Complex class

Complex a, b;
Complex c = a + b;

Side Note:
• According to some schools of thought, operator

overloading is a bit dangerous
• The reason: you can’t see what you’re getting

when you read the code:
• In this code, there are no possible side-effects:

• But with our own classes, it’s not easy to tell what
the overloaded operators actually do.

int a = 10, b = 5;
a += b;

myArray a, b;
a += b;

Moral of the Story

• To write good code:
• Overload operators should mimic the

functions of their built-in counterparts
• If you want to do anything else, write

an appropriately-named member
function to do it for you

Implementations
class Complex
{
public:
 Complex();

 Complex(const Complex& c)
 {
 // this needs an implementation
 }

 Complex& operator=(const Complex& c)
 {
 // so does this
 }

private:
 float real, imag;
};

• How would we
implement the
copy constructor
and operator=?

• Do we really need
both of them?

A shortcut

• We can often implement one function by using
another (we did this with constructors,
remember?)

• The copy constructor and operator= are very
similar. Rather than implementing both of them,
you can just implement the operator=.

• What would the copy constructor look like?

Complex(const Complex& c)
{
 // what does this look like?
}

Why does this matter?

• Partly because it makes things easier.
• Partly because… let’s take a look at the list of

overloadable operators again!

• Aka, if you’ve overloaded +, you’ll probably want to
overload += as well.

+ - * / = < > += -= *= /= << >>
<<= >>= == != <= >= ++ -- % & ^ ! |
~ &= ^= |= && || %= [] () , -> * ->
new delete new[] delete[]

Another example

• Here we’re
overloading the
equality (==)
operator

• Will these work?

class Complex
{
public:
 Complex();

 bool operator==(const Complex& c)
 {
 if(real == c.real)
 return true;
 else
 return false;
 }

private:
 float real, imag;
};

Complex p, q;

if(p == q)
 ; // do something

if(p != q)
 ; // do something else

Nope.

• Turns out that ==
and != are different
operators

• If you want to use !=,
you have to define it

Complex p, q;

if(p == q)
 ; // do something

if(p != q)
 ; // do something else

Cpptest.cpp: error C2676: binary '!=' : 'Complex' does not define this
operator or a conversion to a type acceptable to the predefined operator

This is the error that Visual C++ generates:

bool operator!=(const Complex& c)
{
 // how do we implement this?
}

Another operator: multiplication

• Let’s look at the vector3D
class again:

• Based on what we’ve seen
so far, what would the
operator* function look
like?

class Vector3D
{
public:
 Vector3D();

private:
 float x, y, z;
};

Overloading the Overloads

• We defined an operator* function that
accepts a Vector3D, but we can make it
accept other types too

• We can overload the overloaded operators!

class Vector3D
{
public:
 Vector3D();
 Vector3D operator*(Vector3D& rhs);

private:
 float x, y, z;
};

• How do define
another version
of this function
that accepts a
single float?

Random
Overloading Stuff

• Assuming the
operators are
correctly
implemented,
can we do this?

• Why or why not?

Vector3D* vec = new Vector3D;
Vec = vec * 4;

Stuff You Can’t Do:

• Overload these operators: . .* :: ?:
• Overload operators for primitive types (int,

float, etc.)
• Create new operators! You’re stuck with the

ones that C++ understands.
• Change the arity of an operator (make a

binary operator unary, etc)

• Change the precedence of an operator.

