
Structs ‘n Classes

Dynamic Memory
Review

• How do we dynamically declare an array of
100 int’s?

• How do we delete it?

• What happens if you forget to delete it (or
you delete it incorrectly)?

Some string review
• How are strings represented in C++?

• What is a NULL terminator?

• How much memory should you allocate for a
string?

• What very important thing do you need to do
when putting characters into a string?

• What’s a fast way of declaring and initializing string
variables?

• How do we embed a newline or a quotation mark
in a string

Comparing Strings

• Say we need to
compare two
strings...

• Can we do it this
way?

• Would <, >, <=, or
>= work any better?

char one[10], two[10];

strcpy(one, "hello");
strcpy(two, "hello");

if(other == name)
 cout << "same";
else
 cout << "different";

Comparing Strings

• The usual way to compare strings is
lexicographically - think phone book/dictionary

• One function to do this is strcmp:

int strcmp(const char* s1, const char* s2)

strcmp returns an integer that is:
< 0 when s1 < s2
0 when s1 == s2
> 0 when s1 > s2

For more information...
• The C standard library has many functions for

working with strings:

• formatting/modifying them

• copying/manipulating them

• converting them back and forth from integers,
floats, etc.

• ... and so on

• Google “string.h” and read about these if and
when you need them!

So Far, We Can:

• Declare and use simple data
types (int, float, char, bool, etc.)

• Use those data types in arrays

• This isn’t enough, though: most
complicated programs require
groups of information, all neatly
stored together

Motivation...
• Example: MP3 ID3 tags

• We might want to store
name, bit rate, year,
length, artist, album, etc.

• We’ve learned no
convenient way of doing
this, short of maybe
declaring a variable for
each item.

• This quickly becomes
unworkable

char name[255];
int year;
float length;
int rate;

Introducing struct!
• ... but it makes more sense to group them all together in

a single data type, which we get to define

• We can do this with a C++ concept called a structure

struct id3Tag
{

char name[255];
int year;
float length;
int rate;

};

struct keyword
signals the start
of a structure

definition

name of the
structure type
we’re creating

these are the
members of the

structurestructure definitions
must end with a

semicolon

struct contents
enclosed between

curly brackets

Our Very Own Data Type!
• So now we have our very own data type, called

id3Tag that we can use - at this point id3Tag can
be treated just like any built-in type

• We can declare variables of type id3Tag the same
way we would with any other type:

id3Tag soulBossaNova;
id3Tag* ptrToSong;
id3Tag U2[50];
struct id3Tag ticketToRide;

• Note that we can also treat the word struct like it’s
part of the type - this is a holdover from C

The Rules
• Structure members can be of any type

• Arrays can be structure members

• A structure can be a member of another structure

• A structure can’t contain an instance of itself.

• It can, however, contain pointers to itself.

struct node // bad
{

int payload;
node variable;

};

struct node // good
{

int payload;
node* variable;

};

Accessing structures
• Statically allocated structures are accessed

using the dot operator (the period):

id3Tag soulBossaNova;
soulBossaNova.year = 1982;
cout << soulBossaNova.year << endl;

id3Tag U2[50];
strcpy(U2[5].name, “Beautiful Day”);

• Members of a structure can be accessed and
used like regular variables, because they are
regular variables - just grouped with others.

• Accessing through a pointer (as with any
dynamically created structure) uses a different
access mechanism: the arrow (->) operator

Accessing structures 2

id3Tag* soulBossaNova = new id3Tag;
soulBossaNova->year = 1982;

• Mixing up access operators will cause a compiler
error

• What would be another way of accessing the
year member?

Accessing structures 2
id3Tag* soulBossaNova = new id3Tag;
soulBossaNova->year = 1982;

• Note that we’re doing dynamic memory allocation
here - this works the same way as it does for all
the “regular” types

• This is where dynamic allocation actually gets
useful (we see this more later)

• Remember, we have to clean up after ourselves:

delete soulBossaNova;

Accessing structures 3

• You can treat variables within a structure
exactly as if they were “regular” variables

• Each of them has the same type and
characteristics they would have if they were
not in a structure

• The structure serves only to group these
variables together - it doesn’t change their
individual properties

Passing Structures

• A structure can be passed as a
parameter to a function, just like
any other type

• By default, structures are passed
by value.

• When/why would you want to
pass by reference instead?

• What are some potential
problems in passing by value?

struct video
{
 int* frame;
 int list[10];
 int title;

};

void func(video v);

Passing Structures By Value
• When structures get passed by value, each member

of the structure gets copied.

• This becomes a problem when a structure contains
pointers:

struct person
{
 char* name;
 int age;
 int zipcode;

};

“tugboats and arson”

struct person
{
 char* name;
 int age;
 int zipcode;

};

(copy)

... back to structures
• Structures can include pointers to other structures

of the same type

• This is how we can start to create more
complicated data structures: lists, trees, graphs, etc.

• An example (from a few slides back): here’s what
each node of a linked list looks like:

struct node
{

int payload;
node* next;

};

points to another
instance of the node
structure

Example:
Linked Lists

• Let’s make a simple linked list structure

• ... and some code that will add integers to it

• This will tie directly into your assignment!

Project Two

• Use an alphabetized linked list that stores the
word and its count

• Whenever a word is encountered, insert it in the
list (if it isn’t there already) and increment its
count

• At the end, print out all the words (in alphabetical
order) and their frequency

Write a program that allows the
user to enter words and counts
their frequency

Project Two

• Checking if a given word is already in the list

• Inserting into the linked list (in alphabetical order)

• ... these two can be done in one step!

• Properly cleaning up the linked list

The tricky bits:

Structures, cont.

• Structures are essentially a concept from C

• They have several limitations:

• copying them can be a pain

• You can easily have uninitialized data
(everybody forgets sometime!)

• The program using the struct has full
access to everything in it

Full Access
• The program using the struct has full

access to everything in it

• Why can this be a problem?

• Sometimes you want to put restrictions
on what data a variable can contain:

If you were designing a clock, you’d
probably want to ensure that

0 <= minute <= 59 ...

Time curTime;
curTime.minute = 85;

... but nothing would stop you
from writing code like this:

Object Oriented
Programming

• Object Oriented Programming (OOP) is a
methodology that addresses some of these limitations.

• Structures are intended to hold data, but most
problems require both data and the logic that operates
on that data

• OOP gives us that abstraction, by letting us couple the
data together with functions that do stuff with that
data.

OOP Basics

• Let’s say you want to do a lot of work with 3D
vectors. For a 3D vector, you have:

• Data: x, y, z (all floating point numbers)

• Operations: addition, normalization, etc.

• We can bring these things together by defining an
abstract data type.

• But first... how would we use a struct to
represent the data parts?

vector3D as a structure
struct vector3D
{

float x;
float y;
float z;

};

This is how we
would define a struct
to handle the data
side of things.

• Remember: this is a definition of a structure. Here we define
what data is going to be in the structure - the data itself
doesn’t exist until we make an instance of this structure.

• So how do we add the other part of an ADT - the
operations that use this data?

introducing: class

class vector3D
{
public:

float x;
float y;
float z;

};

We define an ADT in C++ using the class keyword.
Here’s the class version of the vector3D structure:

We’re now using class
here instead of struct.

We have this new public
keyword sitting there. We’ll

get to this in a bit.

Everything else is
exactly the same! Right now
this behaves exactly like our

struct version.

introducing: class

• Again, like a struct, this
isn’t an actual usable
object yet - it’s a
definition of what an
object will look like
when we get around to
making one of this type.

• So we can’t initialize
variables here (does it
make sense why not?)

class vector3D
{
public:

float x = 3.0;
float y = -1.5;
float z = 42.0;

};

doesn’t work!

class vector3D
{
public:

float x;
float y;
float z;

};

works fine

Adding methods
• We’ve got the data part defined: now we need

to need to define the operations part.

• You do that by adding functions that belong to
the class (these are often called methods, or
sometimes member functions).

• The point of these methods is to operate on
the data within the class.

• Maybe we often need to calculate the length of
a 3D vector. How do we add a method to do
that?

Adding methods 2
• Now we’ve added length(), a

method to calculate the
Euclidean length of the
vector (just an example -
the math isn’t important).

• Note that this is just a
declaration (or prototype)
of the function - we still
need to define the body of
the method!

class vector3D
{
public:

float length();

float x;
float y;
float z;

};

class vector3D
{
public:

float length();

float x;
float y;
float z;

};

float vector3D::length()
{
 float dist;
 dist = x*x + y*y +z*z;
 return sqrt(dist);
}

The body of a function is
often defined outside of a
class declaration.

We tell the compiler that
this function belongs to the
class vector3D using the
scope resolution operator (::)

Adding methods 3

float vector3D::length()
{
 // body goes here
}

class vector3D
{
public:

float length();

bool isOnFire()
{
 return false;
}

float x;
float y;
float z;

};

float vector3D::length()
{
 float dist;
 dist = x*x + y*y +z*z;
 return sqrt(dist);
}

We can also define methods
within the body of the class
itself.

isOnFire() is completely
defined within the function
declaration; no external body
is required (or allowed) for
this function.

Adding
methods

#4

class vector3D
{
public:

float length();

float x;
float y;
float z;

};

float vector3D::length()
{
 float dist;
 dist = x*x + y*y +z*z;
 return sqrt(dist);
}

Adding methods 5
• Every method that belongs

to a class must be declared
in the class declaration!

• This isn’t like regular
functions, where you can
just define a function
without giving it a
prototype first

• The prototype goes in the
class declaration

class vector3D
{
public:

float length();

float x;
float y;
float z;

};

float vector3D::length()
{
 float dist;
 dist = x*x + y*y +z*z;
 return sqrt(dist);
}

Classes and Scope
• Every class defines its own

scope: x, y, and z are all part
of vector3D’s scope

• Every method in a class has
access to that scope

• So, length() can access x, y, and
z as if they were local
variables

• Can two classes have member
variables with the name
“distance”?

Access Controls
• Remember this example from earlier?

• We wanted to avoid letting code set the
minute variable to something invalid

• If Time is a struct, nothing prevents us
from setting minute to something weird.

Time curTime;
curTime.minute = 85;

... but nothing would stop you
from writing code like this:

If you were designing a clock, you’d
probably want to ensure that

0 <= minute <= 59 ...

Public Access

• This brings us back to the
mysterious public keyword.

• Any variables declared in the
public section can be accessed
by any part of the program

• Any function in the public
section can be called by any
part of the program

• main() can modify v.x,
because x is public

class vector3D
{
public:

float length();

float x;
float y;
float z;

};

int main()
{

vector3D v;
v.x = 1.5;

}

Private Access
• private is another access

specifier that we use to
“hide” member variables

• The only functions that can
access private variables are
methods in that class

• Likewise, private functions
(methods) can only be called
by other methods in the
same class

• Now, main() can’t access x!

class vector3D
{
public:

float length();

private:
float x;
float y;
float z;

};

float vector3D::length()
{
 float dist;
 dist = x*x + y*y +z*z;
 return sqrt(dist);
}

int main()
{

vector3D v;
v.x = 1.5; // bad!

}

Access Specifiers
• public and private start

their own sections:
everything in that section
has that access attribute
(until a new section starts)

• If you don’t specify, the
default access specifier for a
class is private

• There’s also a third access
specifier: protected

• We’ll talk about that one
later on in the course.

class vector3D
{
public:

float length();
void flip();

private:
void doPrivateStuff();
void doubleUp();
float calcTangent();

float x;
float y;
float z;

public:
void normalize();

};

Creating Instances
of an Object

• So far, remember, we’ve just defined the class

• The process of using that class definition to make a real,
usable object is called instantiation - this allocates
memory for the object and lets you do stuff with it (how
much memory do we need?)

• You make instances of the class the same way you do for
any other type:

vector3D vec;
vector3D* ptr = new vector3D;

Using Objects
• Once you’ve instantiated an object, you access its

members the same way you access a structure

• We access class methods the same way: using the
dot operator (.) or the arrow operator (->)

// declared statically
vector3D vec;
vec.x = 42;
cout << vec.length() << endl;

// declared dynamically
vector3D* ptr = new vector3D();
ptr->x = 42;
cout << ptr->length() << endl;

What has to be true in
order for this code
snippet to compile?

Accessor Methods

• Once we’ve declared variables
private, how does outside code
(e.g. main) get access to them?

• They can’t access them directly...

• The only code that can access
private variables are member
functions.

• So we need member functions
to access these variables for us.

class time
{
private:

int tHour;
int tMinute;
int tSecond;

};

int main()
{

time t;

// bad!
t.tHour = 9;

return 0;
}

Accessor Methods
• The accessor methods

themselves are public, so they
can be called by anything

• The set accessor method can
also make sure that the data
is valid:

class time
{
public:
 int hour();
 void setHour(int h);

private:
int tHour;
int tMinute;
int tSecond;

};

int main()
{

time t;
t.setHour(9);
cout << t.hour();
return 0;

}

void time::setHour(int h)
{

if(h > 12)
h = 12;

if(h < 1)
 h = 1;
hHour = h;

}

encapsulation

• Accessor methods are used to separate interface
from implementation

• This process is called encapsulation.

• The idea: hide all the class implementation details
from the code that is using the class - no outside
code should have to know the details!

• You don’t need to know how a car works in order
to drive one - just how to use the car’s “interface”!

• A class’s interface is made up of the
public methods you use to interact
with the class.

benefits of encapsulation
• One major reason for encapsulation:

• As long as a class’s interface stays consistent, this
lets you completely change the way a class works
internally and not “break” any code that relies on
the class

• Say we wanted to change our time class to store an
epoch instead: the number of seconds since midnight.

• As long as the time interface stays consistent, we just
have to write the accessor functions and no other
code has to change.

introducing const
• Defining good interfaces also

can protect you from your own
mistakes

• For example... accessor methods
that get variables can be marked
as read-only, so the compiler will
generate an error if that method
tries to modify anything in the
class

• This is done with C++ keyword
const, which has been sadly
neglected until now

class time
{
public:
 int hour() const;

void setHour();

private:
int tHour;
int tMinute;
int tSecond;

};

int time::hour() const
{

// this is an error!
tSecond = 10;

}

class time
{
public:
 int hour() const;

void setHour();

private:
int tHour;
int tMinute;
int tSecond;

};

int time::hour() const
{

// this is an error!
tSecond = 10;

}

const methods
The keyword const
comes after the method
name - think of it as part
of the function name

It also has to be there in
the function definition

Since hour() is marked
const, it can't modify
anything in the class without
causing a compiler error.

int time::hour() const
{

return tHour;
}

const methodsint global = 42;

void changeGlobal()
{

global++;
}

class time
{
public:
 int hour() const;

void setHour(int h)
{

tHour = h;
}

private:
int tHour;
int tMinute;
int tSecond;

};

int time::hour() const
{

changeGlobal();
return tHour;

}

int time::hour() const
{

setHour(11);
return tHour;

}

Which of
these
versions of
the hour()
method will
compile?

const
parameters

• const is especially useful
for references

• Pass-by-reference is
efficient, but leaves
parameters open to getting
changed in ways you might
not expect

• If the function accepts a
const reference, you have
some assurance that
parameters will remain
unchanged!

struct bigData { ... };

int sneakyFunc(bigData& b)
{
 b.count++;

return b.number*3;
}

int main()
{

bigData data;
sneakyFunc(data);

}

we can change sneakyfunc to:
int sneakyFunc(const bigData& b)

Then it can’t change any values
inside b, because the parameter is
marked const. By adding const we
ensure b remains unchanged.

... and finally ...
• There’s the const variable. Useful for things

like mathematical constants:

const float pi = 3.14159265;

• Any variable can be
declared const; once
it is initialized, it
can’t be changed.

Fun With
Code!

• Let’s write a circle
class with:

• a radius

• get/set member
functions

• methods to
calculate area and
circumference

