
dynamic memory & C-style
strings & structures

Static Memory
• So far we’ve been dealing with static memory -

variables allocated statically, at compile time.

• Static memory is declared on the stack

• Static memory is very easy for the compiler to deal
with:

• amount of memory fixed at compile time

• no chance of memory leaks

• Downside(s) of static memory?

Dynamic Memory

• Dynamic memory is more powerful -
you don’t need to know the size until
runtime

• Can be used as necessary

• Dynamic memory comes from the heap - a
pool of memory set aside for this purpose

• Downside(s) of dynamic memory?

Dynamic Allocation

• Memory is dynamically allocated through...

• POINTERS!!!!!!!! (woo!)

int* foo = new int;

introducing the new keyword:

• This syntax allocates a single int. You can also
do this for arrays:

int* baz = new int[50];

Yet Another Review:
int* foo = new int;

int* baz = new int[50];

foo is a dynamically allocated integer.
How do we use it?

baz is a dynamically allocated array of
integers. How do we use it?

How are these two things different?

dynamic arrays

• Arrays allocated via dynamic memory are
used exactly the same way that arrays
allocated statically are.

• Only one minor difference regarding the
array pointer variable - anybody remember
what it is?

Some Questions

• When does the life of a
statically allocated variable
end?

• When does the life of a
dynamically allocated variable
end?

Cleaning
Up

• See the problem with the above
code?

• Static variables get de-allocated
right when they go out of scope -
dynamic variables need to be
deleted explicitly!

• Otherwise you get memory leaks

for(int i = 0; i < 10; i++)
{

int* array = new int[15];
...

}

Memory Leaks

• When you use a pointer to dynamically
allocate memory...

• ... and the pointer goes out of scope before
you have deallocated the memory...

• Then you have a memory leak.

• These are (usually) cleaned up by the
operating system after the program exits,
but the program can still run out of memory
while it is running

Cleaning Up

• Single objects, allocated with new, get cleaned
up with the keyword delete:

int* foo = new int;
...
delete foo;

• Arrays, allocated with new and [], get cleaned
up with the keyword delete[]:

int* baz = new int[10];
...
delete[] baz;

Fun with
delete!

• What happens if we try and
delete an array of dynamically
allocated stuff?

• What if we try and delete a
pointer that has been assigned
the address of a static variable?

• What if we try to delete[] a
pointer that has been allocated
with a single new?

Useless Program
Time!

Let’s write a program
that gets a number
from the user,
dynamically an array
of that size, fills it
with n powers of
two, and prints ‘em
all out.

Hey! Wouldn’t it be nice if...

string word = “pickles”;
word += “ are tasty!”;
cout << word << endl;

you could do stuff like this?

You sure can! Just... not today.

Today we’re learning about C-style strings,
which are quite a bit harder to use

and more annoying! Hooray!

C Strings

• It’s important to know these - you’ll come
across them a lot, even when using C++

• A string in C is nothing special - just an array
of char’s; each char holds a single
character

• Messing with strings involves lots of nifty
pointer arithmetic and manipulation

About Chars
• A character in C++ is a number (an 8-byte

integer, to be exact)

• The numbers are coded using a standard
mapping called ASCII: (American Standard
Code for Information Interchange)

• ‘a’ = 97, ‘b’ = 98, ‘A’ = 65, etc.

• You can find a table of these in about a
gazillion places on the web

• You can assign single ASCII character values
to a char using single quotes:

char letter = ‘A’;
cout << letter;

• Or you can assign a char an integer value
(since it is an integer type):

char letter = 65;
cout << letter;

• You can also do arithmetic on characters:

char letter = ‘a’ + 2;
cout << letter;

Arrays of Chars
• Since a string is a sequence of characters, we

can represent it as an array of characters:

char turkleton[12];

• This array can hold up to 12 characters, as
you’d expect

• This brings up the old array problem, though:
how can you tell how big an array is?

• Other than storing a separate counter variable,
there’s no easy way to tell how many characters are
in a string.

• The C solution to this is to have the last ‘character’
be a special character called a null terminator,
which has the value 0 - after this the string is
considered “ended”, even if there is more following.

• There needs to be space to store the null terminator
too, so each character array needs to have at least
one more slot than you have characters.

null
s

C Strings

• turk has room for only 11 actual characters,
and one null terminator:

char turkleton[12];

c h r i s t o p h e r \0

• Even though 11 characters will fit, you don’t
need 11 characters. Less is fine:

c h r i s \0

length: 11

length: 5

Declaring Strings (Character Arrays)

• Because a C-style string is just a character array,
we can declare it like any other array:

char kelso[7];

• If you want to pre-initialize it with numbers, that’s
OK too: a char is an integer, after all!

char kelso[7] = {1,2,3,4,5,6,7};

• More useful, though, to be able to fill it with characters...

char kelso[7] = {‘d’,’o’,’c’,’t’,’o’,’r’,’\0’};

Declaring Strings (Character Arrays)

• A shortcut in C/C++ is to use double-quotes in
the initialization, instead of having to specify each
character individually:

char kelso[7] = “doctor”;

• Note that we aren’t specifying the null terminator
here: any string literal in C/C++ has the null
terminator automatically appended.

• (A string literal means: any time you see stuff in
double quotes in your source code file)

More Null Terminator Stuff
• The value of the null terminator is zero.

Note that we specify it using a backslash-
zero: ‘\0’

• You can embed this inside a string, too:

char CSBuilding[] = “MacLean\0 Hall”;
cout << CSBuilding << endl;

• Even though there’s more characters following
“MacLean”, once a function encounters the
null terminator it will stop printing

A Quick Detour:

• Notice that we had to use ‘\0’, instead of just ‘0’?
Why is that?

• The backslash (\) tells the compiler that this is the
start of an escape sequence: it means that the
character following the backslash has a special
meaning

• So ‘\0’ means “null terminator”, whereas ‘0’ just
means ‘zero’

• Not the integer zero, mind you: it means the
character zero, which is actually the integer 48!

Fun with Escape Sequences!

A Quick Detour:
Fun with Escape Sequences!

What does this mean?
It means that sometimes what you see isn’t what you
get, and that you have to be careful with backslashes!

Some common escape sequences:

\0
\n
\’
\”
\\

null terminator
newline (like endl)
single quote
double quote
an actual backslash

A Quick Detour:
Fun with Escape Sequences!

FILE* file = fopen(“C:\nichols\test.txt”,”r”)

Here’s an actual chunk of (C) code that someone might write.
What’s wrong with this?

FILE* file = fopen(“C:\\nichols\\test.txt”,”r”)

We want these particular backslashes to be interpreted as
actual backslashes, not escape sequences, so do it like this:

cout << “I am very tired.\nI will go to sleep now.\n”;

On the other hand, escape sequences (newlines in particular)
are often very handy, so feel free to use them:

Declarations:
Review / Check Yer Understanding

char bob[] = 1;
char bob[] = {1};
char bob[] = {'1', '\0'};
char bob[] = {'1', 0};
char bob[] = "hello";
char bob[] = {'h','e','l','l','o'};
char bob[30] = {'h','e','l','l','o','\0'};
char bob[3] = {'h','e','l','l','o','\0'};

Which of these are valid and/or proper?

char* bob = new char[50];

Remember, we can also create strings dynamically:

Note about Declarations

char janitor[20] = “fearitude”;

Stuff like this is nice and handy, but you only
get to assign a string (or a group of numbers/

characters) to an array when you’re declaring it.

char janitor[20];
janitor = “fearitude”;

This doesn’t work: (why not?)

String Functions
• We’ve been using <iostream> for a while now, but

there are other libraries: a handy one for string functions
is <cstring> or <string.h>

• Remember: this will include a header file, made up of
function prototypes, but not the functions themselves:
those get linked in later

• <cstring> gets you access to the old-school string
functions in the C Standard Library

• ... it’s important to know how these work, and what
they’re doing behind the scenes!

example: strcpy

char buffer[100];
strcpy(buffer, “Hi, I’m a string!”);

Here’s the prototype:

This is a function that copies one string into another.

char *strcpy(char *dest, const char *src);

Here’s a sample usage:

Anything bother you about this?

• When you put something into a string or array or any sort
of data buffer, C/C++ does not check to make sure
that the data “fits”.

• You are responsible for doing that.

• If you’re not careful, strcpy and friends can be dangerous
to use, because it will happily write past the end of the
string, clobbering whatever happens to be in that memory.

• This isn’t just bad programming; it can also be used to
compromise your machine.

A Quick Detour:
Fun with Computer Security!

A Quick Detour:

• So the moral of the story:

• When you’re coding your own functions, make
sure that you include code to prevent any
overwriting of the buffer. (How would you do
this?)

• Use “safe” C functions (strncpy, etc) when you
can instead of the “dangerous” ones (like
strcpy, wgets, etc)

Fun with Computer Security!

Anyway... string functions.

• strlen works by counting each character in a string
until it hits a null terminator (which is not included
in the count). It’s a pretty simple function.

• Let’s try writing our own version of strlen!

Here’s the prototype of
strlen, a function that

calculates the length of a string:

int strlen(const char *s);

More Programming!

• Let’s write a function kinda like strcpy, in that it copies a
source buffer to a destination buffer, which we will create
dynamically.

• It will include a maximum number of characters to copy
(does this prevent overflow?)

• It will only copy characters that are either letters or a
space.

• It will use lots of pointers! Hooray!

to tie a lot of this stuff together...

char* gcopy(char *dest, int maxCharsToCopy);

Comparing Strings

• Say we need to
compare two
strings...

• Can we do it this
way?

• Would <, >, <=, or
>= work any better?

char one[10], two[10];

strcpy(one, "hello");
strcpy(two, "hello");

if(other == name)
 cout << "same";
else
 cout << "different";

Comparing Strings

• The usual way to compare strings is
lexicographically - think phone book/dictionary

• One function to do this is strcmp:

int strcmp(const char* s1, const char* s2)

strcmp returns an integer that is:
< 0 when s1 < s2
0 when s1 == s2
> 0 when s1 > s2

For more information...
• The C standard library has many functions for

working with strings:

• formatting/modifying them

• copying/manipulating them

• converting them back and forth from integers,
floats, etc.

• ... and so on

• Google “string.h” and read about these if and
when you need them!

So Far, We Can:

• Declare and use simple data
types (int, float, char, bool, etc.)

• Use those data types in arrays

• This isn’t enough, though: most
complicated programs require
groups of information, all neatly
stored together

Motivation...
• Example: MP3 ID3 tags

• We might want to store
name, bit rate, year,
length, artist, album, etc.

• We’ve learned no
convenient way of doing
this, short of maybe
declaring a variable for
each item.

• This quickly becomes
unworkable

char name[255];
int year;
float length;
int rate;

Introducing struct!
• ... but it makes more sense to group them all together in

a single data type, which we get to define

• We can do this with a C++ concept called a structure

struct id3Tag
{

char name[255];
int year;
float length;
int rate;

};

struct keyword
signals the start
of a structure

definition

name of the
structure type
we’re creating

these are the
members of the

structurestructure definitions
must end with a

semicolon

struct contents
enclosed between

curly brackets

Our Very Own Data Type!
• So now we have our very own data type, called

id3Tag that we can use - at this point id3Tag can
be treated just like any built-in type

• We can declare variables of type id3Tag the same
way we would with any other type:

id3Tag soulBossaNova;
id3Tag* ptrToSong;
id3Tag U2[50];
struct id3Tag ticketToRide;

• Note that we can also treat the word struct like it’s
part of the type - this is a holdover from C

The Rules
• Structure members can be of any type

• Arrays can be structure members

• A structure can be a member of another structure

• A structure can’t contain an instance of itself.

• It can, however, contain pointers to itself.

struct node // bad
{

int payload;
node variable;

};

struct node // OK
{

int payload;
node* variable;

};

Accessing structures
• Statically allocated structures are accessed

using the dot operator (the period):

id3Tag soulBossaNova;
soulBossaNova.year = 1982;
cout << soulBossaNova.year << endl;

id3Tag U2[50];
strcpy(U2[5].name, “Beautiful Day”);

• Members of a structure can be accessed and
used like regular variables, because they are
regular variables - just grouped with others.

• Accessing through a pointer (as with any
dynamically created structure) uses a different
access mechanism: the arrow (->) operator

Accessing structures 2

id3Tag* soulBossaNova = new id3Tag;
soulBossaNova->year = 1982;

• Mixing up access operators will cause a compiler
error

• What would be another way of accessing the
year member?

Accessing structures 2
id3Tag* soulBossaNova = new id3Tag;
soulBossaNova->year = 1982;

• Note that we’re doing dynamic memory allocation
here - this works the same way as it does for all
the “regular” types

• This is where dynamic allocation actually gets
useful (we see this more later)

• Remember, we have to clean up after ourselves:

delete soulBossaNova;

Accessing structures 3

• You can treat variables within a structure
exactly as if they were “regular” variables

• Each of them has the same type and
characteristics they would have if they were
not in a structure

• The structure serves only to group these
variables together - it doesn’t change their
individual properties

Passing Structures

• A structure can be passed as a
parameter to a function, just like
any other type

• By default, structures are passed
by value.

• When/why would you want to
pass by reference instead?

• What are some potential
problems in passing by value?

struct video
{
 int* frame;
 int list[10];
 int title;

};

void func(video v);

Passing Structures By Value
• When structures get passed by value, each member

of the structure gets copied.

• This becomes a problem when a structure contains
pointers:

struct person
{
 char* name;
 int age;
 int zipcode;

};

“tugboats and arson”

struct person
{
 char* name;
 int age;
 int zipcode;

};

(copy)

... back to structures
• Structures can include pointers to other structures

of the same type

• This is how we can start to create more
complicated data structures: lists, trees, graphs, etc.

• An example (from a few slides back): here’s what
each node of a linked list looks like:

struct node
{

int payload;
node* next;

};

points to another
instance of the node
structure

Example:
Linked Lists

• Let’s make a simple linked list structure

• ... and some code that will add integers to it

• This will tie directly into your assignment!

