
Arrays & Pointers

Project One

• You should be working on this, if you’re not
already

• Due Friday, midnight-ish

• Any questions on this?

mehr Bericht!

• What are the three types of loops in C++?

• What does break do? continue?

• What does a C++ function look like?

• What does the return keyword do, and
how is it used?

• What’s in a header file?

• What is pass-by-reference?

What
does this
need to
work?

#include <iostream>

int main()
{

int a = 10, b = 15;
swap(a, b);
return EXIT_SUCCESS;

}

void swap(int a, int b)
{

int temp = a;
a = b;
b = temp;

}

review:

Default Arguments

• This is a nifty way to specify defaults for
some (or all) arguments to a function

• When you’re calling that function, you don’t
have to specify every argument if there is a
default

• Very handy, very widely used

void printLetterOnScreen(char letter,
 int xPos = 10, int yPos = 10,
 int repeatCnt = 1)

{
// do stuff

}

Default Arguments Example

printLetterOnScreen(‘g’);

printLetterOnScreen(‘p’, 15);

printLetterOnScreen(‘w’, 15, 42);

printLetterOnScreen(‘x’, 15, 42, 5);

These are all valid ways to call this function:

void printLetterOnScreen(char letter,
 int xPos = 10, int yPos = 10,
 int repeatCnt = 1)

{
// do stuff

}

Default Arguments Example

• Only trailing arguments can have default values

• If a argument has a default, all of the following
arguments also need them

• When calling a function, “skipping” arguments is illegal

printLetterOnScreen(‘p’, 15);

15 will be the value of xPos, not yPos or repeatCnt

Default Arguments and
Function Prototypes

• By convention, default arguments
usually go in the the function
prototype

• They can also be put in the
function definition itself - but not in
both places

• some compilers allow this, as
long as the default arguments
match - g++ doesn’t

Function Overloading

• Don’t be fooled by the scary-sounding
name: function overloading is a good thing!

• The idea: multiple functions can be defined
with the same name

• The compiler will automatically pick which
function to call, based on the number and
type of arguments

void blegh(char letter)
{
}

void blegh(char letter, int reps)
{
}

void blegh(int number)
{
}

void blegh(float realNum)
{
}

void blegh(bool maybe)
{
}

blegh(25);

blegh(‘a’);

blegh(false);

blegh(‘q’, 5);

blegh(5 > 2);

blegh(97, 5);

blegh(32.0);

overloading examples which function gets called?

Ambiguity
• When the compiler can’t figure out which version of

an overloaded function to call, the function is said to
be ambiguous

• This isn’t always obvious, as you saw with the 32.0

• The previous example, now with a default parameter:

void blegh(char letter)
{
}

void blegh(char letter, int reps = 0)
{
}

blegh(‘a’);
goes to which function?

These are ambiguous, so
you get a compiler error

Overloading and return types

• Overloaded functions need to have differing
parameters - different return types is not enough

int doStuff()
{

// ...
}

double doStuff()
{

// ...
}

• This will cause a compiler error

• Why do you think this is?

The Problem:
• What if we wanted to store the first 8 elements of

the Fibonacci sequence? (1,1,2,3,5,8,13,21)

• You could use variables, but that would be clumsy...

Fibonacci!
int fib1 = 1; // not good
int fib2 = 1;
...
int fib8 = 21;

• Also, you’d have to declare all the
required variables at compile time -
what if we needed 100? 1000?

again!

Arrays: a solution

• Data structure built into C++

• Arrays are a consecutive group of memory
locations that have the same type, and are all
referred to by the same name

• i.e., 10 integers in a row, all referred to by
the same name - listOfGrades

• Think of a list in everyday life - except each
element in the list has the same type

Declaring Arrays

example:
int listOfNums[5];

in general:

type arrayName[arraySize];

• What are the initial values of these?

• Size of the array has to be determined at compile time
and can’t be changed later (sort of)

example with initialization:
int listOfNums[5] = {1,2,3,4,5};

expression that can
be evaluated at
compile time

Array Indices
• What is an array index? (starts at 0, not 1!)

• Using the array name, along with the array index, an
array location can be treated just like a variable:

int testArray[10];

// writing into an array
testArray[5] = 234;

// reading from an array
cout << testArray[3*2] << endl;

• Example with a for loop...

Array Storage
• The elements of an array are stored

consecutively in memory

int listOfNums[5] = {10,-2,13,94,-25};

10

-12

13

94

-25

0xbffffaf8

0xbffffafc

0xbffffb00

0xbffffb04

0xbffffb08

what this might end up
looking like in memory...

what are these?

How Arrays Work
• To figure out how to access an array

element, the compiler/program needs:

• the base address of the array in memory

• the index of the element

• the size of the data type in bytes

element address = base address + (data size * index)

• This works because arrays are stored
contiguously

• First element of an array is at 0, not 1!

Passing Arrays to Functions
• To pass an array to a function, you use this

notation:

int sum(int list[])
{
}

square brackets indicate
that this is an array

• Are arrays passed by reference
or by value?

• Let’s write this function...

Another example

• Let’s write a function to determine and
return the biggest and smallest value in an
array of floats.

(float)

More about Arrays

• Arrays are passed by reference, and here’s why:

• What is actually getting passed is the address
of the beginning of the chunk of memory -
the array’s first value

• Can we make copies of an array like this? Why
or why not?

int arrayOne[5] = {1,2,3,4,5};
int arrayTwo[5];

arrayTwo = arrayOne;

Multidimensional Arrays
• You can declare arrays with as many

dimensions as you want

• All elements still are the same type, though

// declaring
int array[2][2] = { {1,2}, {3,4} };

// using
cout << array[0][0] << endl;
cout << array[1][1] << endl;

Pointers!!!
(direct access)

(access via card)

Pointers!!!
• Pointers are one of the most powerful (and

tricky) features of C/C++

• A pointer is a kind of variable that contains a
memory location as its value

• The pointer is “pointing” to whatever is in that
memory location

0xbffffafc 5

address: 0xbffffafc

int count = 5;
int* countPtr = &count;

Pointer
Anatomy

int *pointer = NULL;

pointers must have a type - lets the
compiler know that this pointer is
pointing to an int, for example

* lets the compiler know that
this is a pointer variable

name follows the standard
C++ variable naming rules

either make the
pointer point
somewhere, or assign
NULL so it doesn’t
point somewhere
unintended

declaring pointers

• The * modifies the variable name, not the type!

int* a, b;
int jennysNumber = 8675309;

• In this example, a is a pointer to an integer...
b is just a plain old integer, not a pointer

• This will not compile.

Making the Pointer
“Point” Somewhere

• Pointers store the address of a variable.

• You get the address of something with the
reference (or address-of) operator: &

int count = 5;
int *countPtr = &count;

• & is a unary operator that returns the
memory address of its operand

NULL pointers

• A pointer that doesn’t point to anything is
known as a null pointer

// these are equivalent
int *ptr1 = NULL;
int *ptr2 = 0;

NULL is a constant
that means 0

• Pointers should always be initialized! Make
them point somewhere, or make them a null
pointer. (What happens if you don’t?)

“Using Pointers”

int count = 5;
int *countPtr = &count;

cout << countPtr << endl;

• What does the following code output?

• The numeric value of a pointer is almost
never useful - we mainly care about what the
pointer points to

• When is the numeric value useful?

“Using Pointers” 2

• Introducing: another use for the * symbol, this
time known as a dereference operator

int count = 5;
int *countPtr = &count;

cout << *countPtr << endl;

this code will
print out 5

• * in front of a pointer means: “return the value
of what this is pointing to”. This is known as
dereferencing the pointer

(electric boogaloo)

One *, two meanings

• When you see a * in a variable declaration,
after a type, then you are declaring a pointer.

• When you see a * before variable (or
expression) that’s not being declared, it’s a
dereference.

int* thisIsAPointer;
char* lassie;

cout << *pointer << endl;
number += *count;

Son of “Using Pointers”
So:

& gets returns the address of a variable

* takes an address and returns the value
of what is at that address

and:

& and * are sort of each others’ inverses:

int gazonk = 5;
cout << *(&gazonk) << endl;

“Using Pointers” Strikes Back
• Dereferencing is what gets you into trouble

if your pointers are somehow incorrect!

• This is the root cause of many, many, many
bugs in software

int *ptr = NULL;
cout << *ptr << endl;

int *ptr2;
cout << *ptr2 << endl;

what do these do?

One more time...

int* var = 1234;

// what does this do?
var = 89;

// how about this one?
*var = 89;

Why do we care about
any of this pointer stuff?

• Pointers allow:

• dynamic memory allocation of stuff

• complicated data structures

• iterating through strings

• ... and much much more

Pointers and Arrays
• Simply put:

• an array is a pointer - it points to the first
element of the array.

• A pointer can be used exactly like an array

int numbers[] = {4,8,15,16,23,42};
int *array = numbers;
cout << numbers[2] << endl;

• At this point, numbers and array are
basically equivalent!

Pointer Arithmetic
• Pointers are variables, and you can do math

on them...

• ... but it’s not the kind of math you’re
probably expecting.

• What would this do?

int quux = 42;
int *ptr = &quux;

ptr *= 2;

Pointer Arithmetic 2
• Only addition and subtraction are allowed

• The other arithmetic ops make no sense!

• The math doesn’t work the way you’d expect:

• If ptr was pointing to memory location
8064 before, where is it pointing now?

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;
ptr++;

• If ptr was pointing to memory location
8064 before, where is it pointing now?

• Pointer arithmetic units are the same as the
type size!

• Aka, int pointers work in units of 4, because
the size of an int is 4 bytes

• This is handy: in this example, what value is
ptr pointing to now?

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;
ptr++;

What are some different
ways to refer to the third
element of this array, 15?

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;

What would happen if we
did this:

ptr += 3;

Grokking Pointers

• How could we make a swap function with
pointers instead of pass-by-reference?

• How would you declare (and use) a pointer
to a pointer?

• Can you have two pointers that point to the
same variable?

Pointer Quizlet
int main()
{
 float ff = 5.5;
 float* ptr = &ff;

 cout << " 1: " << &ff << endl;
 cout << " 2: " << ptr << endl;
 cout << " 3: " << &ptr << endl;
 cout << " 4: " << *ptr << endl;
 cout << " 5: " << ff << endl;
 cout << " 6: " << *&ff << endl;

 return 0;
}

Scope and Lifetime

• Scope is the context in which a C++ variable
name exists. You can use the same variable name in
two (or more) functions, because the functions will
have different scopes.

• Scope is defined by curly brackets: { }

void sunshine()
{

 ...
}

The scope of sunshine()

Local Scope
• Each function has its own scope - variables

that are usable between the functions
starting and ending curly brackets { }

int doSomething(int quux)
{

int foo = 0;
while(value < 10)
{

int count =0;
...

}
int baz;

}

foo and quux
are visible within
this scope. What

about baz?

Local Scope Part Deux
• A while loop (or any set of curly brackets)

will create its own scope, and can have its
own variables.

int doSomething(int quux)
{

int foo = 0;
while(value < 10)
{

int count =0;
...

}
int baz;

}

count is only visible
within the scope of the

while loop.

Local Scope #3

int doSomething(int quux)
{

...
}

for(int i = 0; i < 5; i++)
{

...
}

functions and for loops
have variables declared
in their headers - the
scope of those is the
scope of the function
or loopwhat’s the scope for

these variables?

int foo()
{

int low = 6;
bool flag = true;
cout << "low2: " << low << endl;
while(flag)
{

int low = 7;
int count = 8;
cout << "low3: " << low << endl;
flag = false;

}
cout << "count: " << count << endl;
cout << "low4: " << low << endl;

}

int main()
{

int low = 5;
cout << "low1: " << low << endl;
foo();
return 0;

}

local definition of low in
while() hides previous
definition

flag visible here because no
declaration overrides it

count not visible outside of
while()

This is the low declared in
the scope of foo()

This low is in the scope of
main - it is not accessible
from foo

Global Scope
• A function declaration in global scope: a global

function

• A variable declaration in global scope: a global
variable (or object)

• A global object is visible from everywhere: exists
throughout the duration of the program

int GLOBAL = 42;

int main()
{
 return 0;

}

Global Variables ==

• Mostly.

• Why? Using global variables in a function can
hide the behavior of the function.

• Any function can modify a global variable –
changing the behavior of other functions
that might use it.

• When are globals useful?

Lifetimes of Variables

• A lifetime is how long a variable “lives” -
how long the program keeps memory
allocated for it

• Local variables are “born” when the
program enters their scope. They “die” when
when the program leaves their scope.

• What is the lifetime of a global variable?

Static Memory
• So far we’ve been dealing with static memory -

variables allocated statically, at compile time.

• Static memory is declared on the stack

• Static memory is very easy for the compiler to deal
with:

• amount of memory fixed at compile time

• no chance of memory leaks

• Downside(s) of static memory?

Dynamic Memory

• Dynamic memory is more powerful -
you don’t need to know the size until
runtime

• Can be used as necessary

• Dynamic memory comes from the heap - a
pool of memory set aside for this

• Downside(s) of dynamic memory?

Dynamic Allocation

• Memory is dynamically allocated through...

• POINTERS!!!!!!!! (woo!)

int* foo = new int;

introducing the new keyword:

• This syntax allocates a single int. You can also
do this for arrays:

int* baz = new int[50];

Yet Another Review:
int* foo = new int;

int* baz = new int[50];

foo is a dynamically allocated integer.
How do we use it?

baz is a dynamically allocated array of
integers. How do we use it?

How are these two things different?

dynamic arrays

• Arrays allocated via dynamic memory are
used exactly the same way that arrays
allocated statically are.

• Only one minor difference regarding the
array pointer variable - anybody remember
what it is?

Some Questions

• When does the life of a
statically allocated variable
end?

• When does the life of a
dynamically allocated variable
end?

Cleaning
Up

• See the problem with the above
code?

• Static variables get de-allocated
right when they go out of scope -
dynamic variables need to be
deleted explicitly!

• Otherwise you get memory leaks

for(int i = 0; i < 10; i++)
{

int array = new int[15];
...

}

Memory Leaks

• When you use a pointer to dynamically
allocate memory...

• ... and the pointer goes out of scope before
you have deallocated the memory...

• Then you have a memory leak.

• These are (usually) cleaned up by the
operating system after the program exits,
but the program can still run out of memory
while it is running

Cleaning Up

• Single objects, allocated with new, get cleaned
up with the keyword delete:

int* foo = new int;
...
delete foo;

• Arrays, allocated with new and [], get cleaned
up with the keyword delete[]:

int* baz = new int[10];
...
delete[] baz;

Fun with
delete!

• What happens if we try and
delete an array of dynamically
allocated stuff?

• What if we try and delete a
pointer that has been assigned
the address of a static variable?

• What if we try to delete[] a
pointer that has been allocated
with a single new?

Useless Program
Time!

Let’s write a program
that gets a number
from the user,
dynamically an array
of that size, fills it
with n powers of
two, and prints ‘em
all out.

