——— e ———

| NOTICE-PUBLIC BAR |

OUR PUBLIC BAR IS PRESENTLY -'.
! NOT OPEN BECAUSE IT IS
5 CLOSED. MANAGER

i
T

- =

ARRAYS & POINTERS

Project One

® You should be working on this, if you'’re not
already

® Due Friday, midnight-ish

® Any questions on this?

\'A%
\'A%

mehr Bericht!

nat are the three types of loops in C++?

nat does break do! continue!

What does a C++ function look like?

What does the return keyword do, and
how is it used!?

\'A%
\'A%

nat’s in a header file?

nat is pass-by-reference?

#include <iostream>

int main()
{
int a = 10, b = 15;
swap(a, b);
return EXIT SUCCESS;
}

void swap(int a, int b

{
int temp = a;
a b;
b temp;

}

)

review:

What
does this
need to

work?

Default Arguments

® This is a nifty way to specify defaults for
some (or all) arguments to a function

® When you're calling that function, you don’t

have to specify every argument if there is a
default

® Very handy, very widely used

Default Arguments Example

void printLetterOnScreen(char letter,
int xPos = 10, int yPos = 10,
int repeatCnt = 1)

// do stuff

These are all valid ways to call this function:
printLetterOnScreen(‘g’);

printLetterOnScreen(‘p’', 15);
printLetterOnScreen (15, 42);

printLetterOnScreen(‘x’, 15, 42, 5);

Default Arguments Example

void printLetterOnScreen(char letter,
int xPos = 10, int yPos = 10,
int repeatCnt = 1)

// do stuff

® Only trailing arguments can have default values

® [f a argument has a default, all of the following
arguments also need them

® When calling a function,“skipping” arguments is illegal

printLetterOnScreen(‘p’, 15);
)

|5 will be the value of xPos, not yPos or repeatCnt

Default Arguments and
Function Prototypes

® By convention, default arguments
usually go in the the function

prototype

® They can also be put in the
function definition itself - but not in

both places

® some compilers allow this, as
long as the default arguments
match - g++ doesn’t

Function Overloading

® Don’t be fooled by the scary-sounding
name: function overloading is a good thing!

® The idea: multiple functions can be defined
with the same name

® The compiler will automatically pick which
function to call, based on the number and

type of arguments

overloading examples which function gets called?

blegh(25);
void blegh(char letter)

{
; blegh (

void blegh(char letter, int reps)

§ blegh (

void blegh(int number)
{ blegh (
}

void blegh(float realNum) blegh(
{

}

void blegh(bool maybe) blegh (

{
}

blegh (

Ambiguity

® When the compiler can’t figure out which version of
ah overloaded function to call, the function is said to

be ambiguous

void blegh(char letter)

{
}

void blegh(char letter, int reps

{
}

nis isn’t always obvious, as you saw with the 32.0

ne previous example, now with a default parameter:

blegh(‘a’);
goes to which function?

These are ambiguous, so
you get a compiler error

Overloading and return types

® Overloaded functions need to have differing
barameters - different return types is not enough

int doStuff() double doStuff()

{ {
7 ooc 1 oo

} }

® This will cause a compiler error

® Why do you think this is?

The Problem:

® VWhat if we wanted to store the first 8 elements of
the Fibonacci sequence? (I,1,2,3,5,8,13,21)

® You could use variables, but that would be clumsy...

int fibl 1; // not good
int fib2 1;

int fib8 21;

® Also, you'd have to declare all the

required variables at compile time -
what if we needed 100? 1000?

Arrays: a solution

® Data structure built into C++

® Arrays are a consecutive group of memory
locations that have the same type, and are all
referred to by the same name

® i.e, |10 integers in a row, all referred to by
the same name - 1istOfGrades

® Think of a list in everyday life - except each
element in the list has the same type

Declaring Arrays

in general:

type arrayName[arraySize];

\expression that can

example: be evaluated at
. . compile time
int listOfNums[5];

example with initialization:
int 1istOfNums|[5] = {1,2,3,4,5};
® VWWhat are the initial values of these!?

® Size of the array has to be determined at compile time
and can’t be changed later (sort of)

Array Indices

® What is an array index? (starts at O, not 1!)

® Using the array name, along with the array index, an
array location can be treated just like a variable:

int testArray[10];

// writing into an array
testArray[5] = 234;

// reading from an array
cout << testArray[3*2] << endl;

® Example with a for loop...

Array Storage

® The elements of an array are stored
consecutively in memory

int 1istOfNums[5] = {10,-2,13,94,-25};

what this might end up

ffffaf L
10 O ooking like in memory...

~12 Oxbffffafc

13 Oxbfffb00 &
what are these!?

94 Oxbffffb04

-25 Oxbffffb08

How Arrays Work

® TJo figure out how to access an array
element, the compiler/program needs:

t

t

t

ne base address of the array in memory

ne index of the element

ne size of the data type in bytes

element address = base address + (data size * index)

® This works because arrays are stored
contiguously

® First element of an array is at 0, not 1!

Passing Arrays to Functions

® To pass an array to a function, you use this
notation:

int sum(int list[])

{
}
® Are arrays passed by reference \

or b)l Value? square brackets indicate

that this is an array

® | et’s write this function...

Another example

® | et’s write a function to determine and
return the biggest and smallest value in an
array of floats.

More about Arrays

® Arrays are passed by reference, and here’s why:

® What is actually getting passed is the address
of the beginning of the chunk of memory -
the array’s first value

® Can we make copies of an array like this? Why
or why not!?

int arrayOne[5] = {1,2,3,4,5};
int arrayTwo[5];

arrayTwo = arrayOne;

Multidimensional Arrays

® You can declare arrays with as many
dimensions as you want

® All elements still are the same type, though

// declaring
int array[2][2] = { {1,2}, {3,4} };

// using
cout << array[0][0] << endl;
cout << array[l][1l] << endl;

(access via card)

Azerizan umpmm quarterly. v. 1=
. 1

For volumes in Yale |
Published by the U’.i‘ﬂ‘aitj ﬂf rllt&lll Eoeg

1. Philosophy - Peried. I. Pitteburgh S
University.

HST

Pointers!!
® Pointers are one of the most powerful (and

tricky) features of C/C++

® A pointer is a kind of variable that contains a
memory location as its value

® The pointer is “pointing” to whatever is in that
memory location

int count = 5;
int* countPtr = &count;

Oxbffffafc 5

address: Oxbffffafc

. . Pointer
int *pointer
— Anatomy

either make the T e R et A e _,,.f

'!I'"I—':'L =t .|..-|.|- _..____...__.__'
- - S T
POlnter POInt 'I i '.‘1.1 h._-. i ""'"a-.-r'-' b

somewhere, or assign
NULL so it doesn’t
point somewhere
unintended

name follows the standard
C++ variable naming rules

* lets the compiler know that
this is a pointer variable

pointers must have a type - lets the | -
compiler know that this pointer is . JL ot s e

pointing to an int, for example Rl e e db e e v
el -J:;_j;f:,;:,l:ﬁ*.:j._:;.;":a:m_

declaring pointers

® The * modifies the variable name, not the type!

int* a, b;
int jennysNumber = 8675309;

® |n this example, a is a pointer to an integer...
b is just a plain old integer, not a pointer

® This will not compile.

Making the Pointer
“Point” Somewhere

® Pointers store the address of a variable.

® You get the address of something with the
reference (or address-of) operator: &

int count = 5;
int *countPtr = &count;

® & is a unary operator that returns the
memory address of its operand

NULL pointers

® A pointer that doesn’t point to anything is

known as a null pointer

// these are equivalent
int *ptrl = NULL; <

int *ptr2 = 0;

NULL is a constant
that means 0

® Pointers should always be initialized! Make
them point somewhere, or make them a null
pointer. (What happens if you don’t?)

“Using Pointers”

® What does the following code output!?

int count = 5;
int *countPtr = &count;

cout << countPtr << endl;

® The numeric value of a pointer is almost

never useful - we mainly care about what the
pointer points to

® When is the numeric value useful?

“Using Pointers™ 2

(electric boogaloo)

® |ntroducing: another use for the * symbol, this
time known as a dereference operator

int count = 5;
int *countPtr = &count; this code wiill
print out 5

cout << *countPtr << endl;

® *in front of a pointer means: “return the value
of what this is pointing to”. This is known as
dereferencing the pointer

One *, two meanings

® When you see a * in a variable declaration,
after a type, then you are declaring a pointer.

int* thisIsAPointer;
char* lassie;

® When you see a * before variable (or

expression) that’s not being declared, it’s a
dereference.

cout << *pointer << endl;
number += *count;

Son of “Using Pointers”
So:

& gets returns the address of a variable

and:

* takes an address and returns the value
of what is at that address

& and * are sort of each others’ inverses:

int gazonk = 5;
cout << *(&gazonk) << endl;

“Using Pointers™ Strikes Back

® Dereferencing is what gets you into trouble
if your pointers are somehow incorrect!

® This is the root cause of many, many, many
bugs in software

what do these do?

int *ptr = NULL;
cout << *ptr << endl;

int *ptr2;
cout << *ptr2 << endl;

One more time...

int* var = 1234;

// what does this do?
var = 89;

// how about this one?
*var = 89;

Why do we care about
any of this pointer stuff?

® Pointers allow:
® dynamic memory allocation of stuff
® complicated data structures
® iterating through strings

® ...and much much more

Pointers and Arrays

® Simply put:

® an array iS a pointer - it points to the first
element of the array.

® A pointer can be used exactly like an array

int numbers[] = {4,8,15,16,23,42};
int *array = numbers;
cout << numbers[2] << endl;

® At this point, numbers and array are
basically equivalent!

Pointer Arithmetic

® Pointers are variables, and you can do math
on them...

® .. butit’s not the kind of math you're
probably expecting.

® VWhat would this do?

int quux 42 ;
int *ptr &Qquux;

ptr *= 2;

Pointer Arithmetic 2

® Only addition and subtraction are allowed
® The other arithmetic ops make no sense!

® The math doesn’t work the way you'd expect:

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;
ptr++;

® |[f ptr was pointing to memory location
8064 before, where is it pointing now!?

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;
ptr++;

® |[f ptr was pointing to memory location
8064 before, where is it pointing now!?

® Pointer arithmetic units are the same as the
type size!

® Aka, int pointers work in units of 4, because
the size of an int is 4 bytes

® This is handy: in this example, what value is
ptr pointing to now!

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;

What are some different
ways to refer to the third
element of this array, 15?

What would happen if we
did this:
ptr += 3;

Grokking Pointers

® How could we make a swap function with
pointers instead of pass-by-reference?

® How would you declare (and use) a pointer
to a pointer!?

® Can you have two pointers that point to the
same variable!?

Pointer Quizlet

int main()

{
float ff = 5.5;
float* ptr = &ff;

cout << " 1: " << &ff << endl;
cout << " 2: " << ptr << endl;
cout << " 3: " << &ptr << endl;
cout << " 4: " << *ptr << endl;
cout << " 5: " << ff << endl;

cout << " 6: " << *&ff << endl;

return O0;

Scope and Lifetime

Scope is the context in which a C++ variable
name exists.You can use the same variable name in
two (or more) functions, because the functions will
have different scopes.

Scope is defined by curly brackets: { }

void sunshine()

—= The scope of sunshine()

Local Scope

® Each function has its own scope - variables
that are usable between the functions
starting and ending curly brackets { }

int doSomething(int quux)

int foo = 0;
while(value < 10)

{

int count =0;

foo and quux

are visible within

this scope.What
about baz?

Local Scope Part Deux

® A while loop (or any set of curly brackets)
will create its own scope, and can have its
own variables.

int doSomething(int quux)

{
int foo = 0;
while(value < 10)

count is only visible
within the scope of the
while loop.

Local Scope #3

for(int 1 = 0; 1 < 5; 1i++)

{
}

what’s the scope for
these variables?

int doSomething(int quux)

{
}

functions and for loops
have variables declared
in their headers - the
scope of those is the
scope of the function
or loop

int foo()

{

int low =
bool flag
cout << "low2:

while(flag)
{

int low
int count
cout <<
flag

}

cout <<
cout <<

"count:
"lowd:

main()

5;
"lowl:

int low
cout <<
foo();

return 0;

7;

"low3:
false;

<< low <s”endl;

8;

ow << endl;

local definition of low in

" while() hides previous

definition

flag visible here because no

~~ declaration overrides it

count not visible outside of
— while()

(7
<< count << endl;

<< low << endl;

‘;----~“-

<< low << endl;

\

[

This is the low declared in
the scope of foo()

This low is in the scope of

main - it is not accessible
Sy

from foo

Global Scope

® A function declaration in global scope: a global
function

® A variable declaration in global scope:a global
variable (or object)

® A global object is visible from everywhere: exists
throughout the duration of the program

int GLOBAL = 42;

int main()

{

return 0;

}

Global Variables ==

Mostly.

Why? Using global variables in a function can
hide the behavior of the function.

Any function can modify a global variable —
changing the behavior of other functions
that might use it.

When are globals useful?

Lifetimes of Variables

® A lifetime is how long a variable “lives” -
how long the program keeps memory
allocated for it

® | ocal variables are “born” when the
program enters their scope. They “die” when
when the program leaves their scope.

® What is the lifetime of a global variable?

Static Memory

® So far we've been dealing with static memory -
variables allocated statically, at compile time.

® Static memory is declared on the stack

® Static memory is very easy for the compiler to deal
with:

® amount of memory fixed at compile time
® no chance of memory leaks

® Downside(s) of static memory?

Dynamic Memory

Dynamic memory is more powerful -

you don’t need to know the size until
runtime

Can be used as necessary

Dynamic memory comes from the heap - a
pool of memory set aside for this

Downside(s) of dynamic memory?

Dynamic Allocation

® Memory is dynamically allocated through...

introducing the new keyword:

int* foo = new int;

® This syntax allocates a single int. You can also
do this for arrays:

int* baz = new int[50];

Yet Another Review:

int* foo = new int;

foo is a dynamically allocated integer.
How do we use it!?

int* baz = new int[50];

baz is a dynamically allocated array of
integers. How do we use it!

How are these two things different?

dynamic arrays

® Arrays allocated via dynamic memory are
used exactly the same way that arrays
allocated statically are.

® Only one minor difference regarding the

array pointer variable - anybody remember
what it is?

Some Questions

® VWhen does the life of a

statically allocated variable
end?

@ ® When does the life of a

dynamically allocated variable
end?

for(int 1 = 0; i < 10; 1i++)

{

int array = new int[15];

Clean’ng ® See the problem with the above

code!

U P ® Static variables get de-allocated

right when they go out of scope -
dynamic variables need to be
deleted explicitly!

® Otherwise you get memory leaks

Memory Leaks

When you use a pointer to dynamically
allocate memory...

... and the pointer goes out of scope before
you have deallocated the memory...

Then you have a memory leak.

These are (usually) cleaned up by the
operating system after the program exits,
but the program can still run out of memory
while it is running

Cleaning Up

® Single objects, allocated with new, get cleaned
up with the keyword delete:

int* foo = new int;

delete foo;

® Arrays, allocated with new and [], get cleaned
up with the keyword delete[]:

int* baz = new int[10];

delete[] baz;

Fun with
delete!

® What happens if we try and
delete an array of dynamically
allocated stuff?

What if we try and delete a
pointer that has been assigned
the address of a static variable!?

What if we try to delete[] a
pointer that has been allocated
with a single new?

Useless Program
Time!

Let’s write a program
that gets a number
from the user,
dynamically an array
of that size, fills it
with n powers of
two, and prints ‘em
all out.

h.

Sormetirmes | ust popup far ho
particular reazon, ke now,

