
Loops
Functions

and

Quick Review...
• variables, data types, expressions

• declare an unsigned integer named score

• declare a double-precision floating-point value
named distance with an initial value of 43.523

• conditional statements

• print “hello” if both of these are true:

• distance is less than 25.0

• a bool named running is true or score is
greater than 100

Quick
Review
2...

#include <iostream>
using namespace std;

int main()
{

int gazonk, foo = 2 * 5;
int baz = 10 - foo;

if(baz)
if(foo)

cout << "Alpha" << endl;
else

cout << "Beta" << endl;

cout << "gazonk: " << gazonk << endl;

return 0;
}

What is the
output of this
program?

Quick
Review
3...

#include <iostream>
using namespace std;

int main()
{

double foo = (2.0 * 5.0) / 1.0;
int baz = 10 - foo;

if(baz)
cout << "Alpha" << endl;

return 0;
}

What is the
output of this
program?

• Computers are very good at doing repetitive
tasks

• Loops aid in doing repetitive work

• Nearly all complex programs will have loops

Loops

Loops
• C++ has three kinds of loops:

• for loop

• while loop

• do-while loop

• Each of these work kind of like the if
statement: they execute the single statement
(or block of statements) that follows them

while Loop
• Condition is checked at the beginning of

every iteration of the loop

• If the condition evaluates to true, the body
of the loop is executed

int number = 0;

while(number < 5)
{

number++;
cout << number << endl;

}

condition

body

while Loop

• One way to think of this:

• syntax and operation of a while loop is the
same as a for loop...

• ... except it will execute the body until the
condition is true

• Again, watch out for stuff like this:

while(tired);
 sleep();

do-while Loops
• A while loop checks the condition before

every iteration of the loop

• so if the condition is never true, the loop
will never execute

• A do-while loop checks the condition at
the end of every iteration

• side-effect: the body of the loop will
always execute at least once, even if the
condition is never true

Anatomy of a do-while

int number = 0;

do
{

number++;
cout << number << endl;

}
while(number < 5);

condition

body
again, single statement
or block of statements

checked after each iteration
of the loop has executed

do keyword
comes immediately before

the body of the loop

semicolon
the while is at the end of
the loop, so it must be

terminated by a semicolon

The for loop

• C-style for-loops are used in C, C++, Java,
Perl, PHP, and a bunch of others

• The for-mat (heh heh) of a for loop:

for(initialization; condition; update)
{

// body of loop
}

for(initialization; condition; update)
{

// body of loop
}

initialization: Executed first - just once. Used to
setup any counter variables used in the loop.
ex: int i = 0; w = 4;

condition: Just like a while, do-while, or if.
Checked before every iteration, as in a while loop.
ex: i < 20; w != 8;

update: Executed after each iteration, used to update
variables (increment, decrement, etc).
ex: i++; q += 4; k *= 5

for-loop
examples

for (int i=0; i<10; i++)
{

cout << “i = ” << i << endl;
}

for (int i=0; i<=10; i++)
{

cout << “i = ” << i << endl;
}

char i;
for (i =‘a’; i<=‘z’; i++)
{

cout << “i =“ << i << endl;
}

for(char i=‘z’; i>=‘a’; i--)
{

cout << “i = “ << i << endl;
}

does this work?
why or why not?

what kind of loop would
you use for...

• Printing out every even number between 0
and 100?

• Getting input from the user and making sure
it is valid?

• Waiting for the time to be 10:00 AM before
continuing?

Infinite Loops
• An infinite loop is a loop where the

“condition” is always true, so the loop can
never terminate

• Be careful of these!

int i = 0;
while(i < 10)
{
}

for(; ;)
{
}

while(true)
{
}

break;
• The break keyword breaks out of the

current loop

• breaks out of the current loop only

• any problems with this?

while(true)
{

while(true)
{

if(rand() % 10 == 5)
break;

}
}

give me a

break;
give me a

break is useful
but a bit ugly - it is
usually a bit more
elegant to rewrite
the loop condition
instead.

How could we
rewrite this?

// class algorithm
while(!classOver)
{

stareAtClock();

if(reallyBored)
break;

}

doFunStuff();

continue;
...skips the rest of the loop body and moves
straight onto the next iteration.

// print grades
for(int i = 0; i < numStudents; i++)
{

if(student[i].droppedClass)
continue;

cout << student[i].name << endl;
cout << student[i].grade << endl;
cout << student[i].classRank << endl;

}

In-class
programming exercise

Let’s make a program
that prints out the
Fibonacci sequence.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

Fibonacci!

Functions

• Functions are a way to group chunks of code
together so they can be reused later

• ... otherwise you end up with huge, hard-
to-maintain chunks of code

• Enables you to structure a program in a
more modular way

• Functions in programming are similar to
functions in mathematics.

Functions, cont.

• Each function has its own code - just like the
code in the main function

• Each function can access its own variables,
but not the variables from any other function

• Functions can also access global variables -
variables declared outside of any function,
including the main function

Function Calls

• Function calls cause the following to happen:

• The currently executing function is
suspended

• Program control is passed to the the
function being invoked

• When the function has finished executing,
the suspended calling function resumes
execution

useless example!
#include <iostream>
using namespace std;

int timesTwo(int input)
{

int output = input * 2;
return output;

}

int main()
{

cout << “two times two is: “
 << timesTwo(2) << endl;

return EXIT_SUCCESS;
}

Anatomy of a Function

int add(int x, int y)
{

int result;
result = x + y;
return result;

}

return type
(can be any C++ type

or an object)

function name parameters
(each parameter needs

a type and a name)

code
return

(function must
return an integer)

function return types
• A function has to have some return type

declared

• Return types can be any basic C++ data type

• Can also be any object type (that bit comes
later)

• If a function doesn’t return a type, the return
type is void

• with a void return type, returning anything
causes a compiler error

Function Parameters
• Parameters are how we provide input to the

function (return value is the output)

• Each parameter has a type and a name... no
two names can be the same. (why not?)

int add(int x, int y)
{
}

int x, int y are the parameters,
indicating this function will need to be called
with two integers as input.

How to call functions
• You call a function using its name, followed

by the parameters in parenthesis, separated
by commas

• Even if a function has no parameters, you still
need to follow the function name with ()

int max = maximum(3, 50);

int ans = UltimateAnswer();

• The compiler makes sure you call a function
with the correct number of arguments:

• The compiler also performs type-checking
on the different arguments.

int max = maximum();
simpleinterest.cpp:6: too few arguments to function `int maximum(int, int)

float var1 = 12.3;
float var2 = 10.5;
int max = maximum(var1, var2);

simpleinterest.cpp:35: warning: passing `float' for argument passing 1 of `int maximum (int, int)
simpleinterest.cpp:35: warning: passing `float' for argument passing 2 of `int maximum (int, int)

Why is this a warning and not an error?

quick detour: type conversion

• Often the compiler can automatically convert one
type to another - this is called an implicit type
conversion

• When this can be done without losing data, the
compiler will usually just do it quietly

• int to float: 32 becomes 32.0, etc.

• Some types can be converted but not without
changing the value

• float to int: 56.8 gets truncated; becomes 56

• The compiler will issue a warning here

quick detour: type conversion

• You can also do an explicit type conversion, in
which you force the compiler to convert the type,
regardless of consequences

float baz = 38.6;

// these are all equivalent
int foo = (int)baz;
int foo = (int)(baz);
int foo = int(baz);

• This lets the compiler know that the conversion was
intended, and usually makes the warnings go away

Question:
int mystery(int x, int y, int z)
{
	

 int value = x;

	

 if(y > value)
	

 	

 value = y;
	

	

 if(z > value)
	

 	

 value = z;
	

	

 return value;
}

cout << mystery(6, 2, 5) << endl;

what is the output the following statement?

Project 1:

• Project One: now available on the class
website

• Due: next Friday, September 8, at 11:59 PM
(electronically submitted)

Palindromic Numbers

Palindromic Numbers
• Palindromic numbers read the same front-to-

back and back-to-front

• e.g., 12321, 99, 1221, etc.

• Algorithm to generate a P.N. from an integer:

• Reverse the number

• Add the reversed number to the original number to get a
new number

• If you’ve made a palindrome, great! Otherwise repeat this
process using the new number

• This works for most - not all - positive integers

Project One:

• Get (and validate) a starting and ending number
from the user, between 10 and 1,000 (why?)

• For each number between the starting and ending
numbers (inclusive), find out if that integer can be
used to generate a palindrome in <= 12 steps

• If yes: print the number, the palindrome, and the
number of steps it took

• If no: print the number and a message saying that
no palindrome could be generated.

What to do:
• Write, debug, and test your code.

• Write a README file with:

• your name

• compilation instructions (include the exact command
you used to compile)

• the amount of time you spent on this project

• anything notes you’d to include (in particular, anything
you’d like me to know when grading)

• Submit a directory containing your README and code
using the CS dept’s submit procedure (check the web site)

Thoughts
• Be sure to read the actual assignment

(posted on the website)

• This isn’t a hard assignment, but there’s
some tricky steps in here.

• What are they?

• What are the individual “chunks” of code
you could write and test individually?

• How will you structure your program to
make it clean and readable?

(Another) Question:
int main()
{

cout << meaningOfLife() << endl;
return EXIT_SUCCESS;

}

int meaningOfLife()
{

return 42;
}

Will this work? Why or why not?

Answer: No.

prototype.cpp: In function `int main()':
prototype.cpp:8: `meaningOfLife' undeclared (first use this function)
prototype.cpp:8: (Each undeclared identifier is reported only once for each
function it appears in.)
prototype.cpp: In function `int meaningOfLife()':prototype.cpp:13: `int
meaningOfLife()' used prior to declaration

compiler output:

C++ files are compiled from top-to-bottom; the
compiler doesn’t “know” about meaningOfLife() because
it hasn’t “seen” it yet.

int main()
{

cout << meaningOfLife()
<< endl;
return EXIT_SUCCESS;

}

int meaningOfLife()
{

return 42;
}

Function Prototypes

• Functions need to be either defined above the
point at which they are called, or...

• There needs to be a function prototype
above where that function is called.

• A function prototype is identical to the first
line in the function body... just without a body,
and followed by a semicolon.

int meaningOfLife();

int meaningOfLife(bool isFun, int, int); // prototype

int main()
{

cout << meaningOfLife() << endl;
return EXIT_SUCCESS;

}

int meaningOfLife(bool isExciting, int b, int c)
{

return 42;
}

• A prototype requires a return value, a name, and argument
types. It can also have argument names - these are optional.

• The argument names can be different than those used in the
function.

• Everything else must be exactly the same!

Question:
int main()
{

cout << meaningOfLife() << endl;
return EXIT_SUCCESS;

}

int meaningOfLife()
{

return 42;
}

Will this work? Why or why not?

Nope.

prototype.cpp: In function `int main()':
prototype.cpp:8: `meaningOfLife' undeclared (first use this function)
prototype.cpp:8: (Each undeclared identifier is reported only once for each
function it appears in.)
prototype.cpp: In function `int meaningOfLife()':prototype.cpp:13: `int
meaningOfLife()' used prior to declaration

compiler output:

C++ files are compiled from top-to-bottom; the
compiler doesn’t “know” about meaningOfLife() because
it hasn’t “seen” it yet.

int main()
{

cout << meaningOfLife()
<< endl;
return EXIT_SUCCESS;

}

int meaningOfLife()
{

return 42;
}

Function Prototypes

• Functions need to be either defined above the
point at which they are called, or...

• There needs to be a function prototype
above where that function is called.

• A function prototype is identical to the first
line in the function body... just without a body,
and followed by a semicolon.

int meaningOfLife();

int meaningOfLife(bool isFun, int, int); // prototype

int main()
{

cout << meaningOfLife() << endl;
return EXIT_SUCCESS;

}

int meaningOfLife(bool isExciting, int b, int c)
{

return 42;
}

• A prototype requires a return value, a name, and argument
types. It can also have argument names - these are optional.

• The argument names can be different than those used in the
function.

• Everything else must be exactly the same!

Uses of Prototypes
• The compiler uses prototypes to validate

function calls without needing to have the
actual function around

• Before a function call can be compiled, the
compiler needs to know that it has the
appropriate function:

• correct name

• correct argument types (by type
conversion if necessary)

Header Files

• Many, many function
prototypes live in header
files that are #include-d,
like <iostream>

• The actual code for these
functions are in other files,
or in libraries that will be
linked into the executable

• We’ll cover how to do this
later. Probably.

Quizlet

void increment(int);

int main()
{

int var = 5;
increment(var);
cout << var << endl;

}

void increment(int x)
{

x++;
}

• Does this compile?

• If so, what is the
output?

Pass by Value
void increment(int);

int main()
{

int var = 5;
increment(var);
cout << var << endl;

}

void increment(int x)
{

x++;
}

• Default method of passing
arguments is pass-by-value.

• This means that copies get
made of each argument,
and the function
manipulates its own copies
- as if they were local
variables.

• What happens to the
copies of the parameters
when the function ends?

Pass by Value
void swap(int x, int y)
{

int temp;
temp = x;
x = y;
y = temp;

}

• What happens to the
copies of the parameters
when the function ends?

• They get discarded!

• Any changes that were
made to those variables
are lost.

• What if you want a
function to change the
values of its parameters?

will this work?

Pass by Reference

void swap(int& x, int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}

• An alternative is pass-by-reference, in which you
pass a reference to the variable

• Then the function will manipulate the variable itself,
not a copy (as in pass-by-value)

• Any changes to the variable will “stick”

references are denoted
by an & between the

type and the
parameter name

References and
Function Prototypes

• The prototype and the
function still have to
match...

• ... including references!

void increment(int);

int main()
{

int var = 5;
increment(var);
cout << var << endl;

}

void increment(int& x)
{

x++;
}

will this compile?

Passing parameters by
reference

void increment(int&);

int main()
{

int var = 5;
increment(var);
cout << var << endl;

}

void increment(int& x)
{

x++;
}

When looking at the
function call,
parameters passed by
reference look exactly
like those passed by
value.

void doStuff(int& foo, int& baz, int reep)
{
 foo = 4;
 baz = foo * reep;
 foo++;
}

int phooey = 1, gazonk = 2;
doStuff(phooey, gazonk, 2)

int phooey = 1, gazonk = 2;
doStuff(phooey, phooey, 2)

int phooey = 1, gazonk = 2;
doStuff(phooey, 2, gazonk)

Are all of these
examples valid?

Why or why not?

Passing by Reference

• When is pass-by-reference a good idea?

• Why should you be careful when using
pass-by-reference?

• What side-effects does it have?

Default Arguments

• This is a nifty way to specify defaults for
some (or all) arguments to a function

• When you’re calling that function, you don’t
have to specify every argument if there is a
default

• Very handy, very widely used

void printLetterOnScreen(char letter,
 int xPos = 10, int yPos = 10,
 int repeatCnt = 1)

{
// do stuff

}

Default Arguments Example

printLetterOnScreen(‘g’);

printLetterOnScreen(‘p’, 15);

printLetterOnScreen(‘w’, 15, 42);

printLetterOnScreen(‘x’, 15, 42, 5);

These are all valid ways to call this function:

void printLetterOnScreen(char letter,
 int xPos = 10, int yPos = 10,
 int repeatCnt = 1)

{
// do stuff

}

Default Arguments Example

• Only trailing arguments can have default values

• If a argument has a default, all of the following
arguments also need them

• When calling a function, “skipping” arguments is illegal

printLetterOnScreen(‘p’, 15);

15 will be the value of xPos, not yPos or repeatCnt

Default Arguments and
Function Prototypes

• By convention, default arguments usually go
in the the function prototype

• They can also be put in the function
definition itself - but not in both places

• some compilers allow this, as long as the
default arguments match - g++ doesn’t

Function Overloading

• Don’t be fooled by the scary-sounding
name: function overloading is a good thing!

• The idea: multiple functions can be defined
with the same name

• The compiler will automagically pick which
function to call, based on the number and
type of arguments

void blegh(char letter)
{
}

void blegh(char letter, int reps)
{
}

void blegh(int number)
{
}

void blegh(float realNum)
{
}

void blegh(bool maybe)
{
}

blegh(25);

blegh(‘a’);

blegh(false);

blegh(‘q’, 5);

blegh(5 > 2);

blegh(97, 5);

blegh(32.0);

overloading examples which function gets called?

Ambiguity
• When the compiler can’t figure out which version of

an overloaded function to call, the function is said to
be ambiguous

• This isn’t always obvious, as you saw with the 32.0

• The previous example, now with a default parameter:

void blegh(char letter)
{
}

void blegh(char letter, int reps = 0)
{
}

blegh(‘a’);
goes to which function?

These are ambiguous, so
you get a compiler error

Overloading and return types

• Overloaded functions need to have differing
parameters - different return types is not enough

int doStuff()
{

// ...
}

double doStuff()
{

// ...
}

• This will cause a compiler error

• Why do you think this is?

More in-class Coding!

• Let’s define some print
functions that can print out
different variable types, and
at different positions.

whoooo!

