
Bit
twiddling;

the C++
String

class

Logical Operators

• These familiar operators (&&, ||, !) are called
logical operators

• They operate on entire expressions

• So a || b is going to be true only if a is true,
or b is true

• ... aka, when we evaluate a and b, at least one
of them comes out as non-zero

Son of Logical Operators

• The logical and/or/not operators operate on
the entire value at once - all of a, or all of b

• A given value is made up of 32 bit (mostly)

• Sometimes we want to do things with
individual bits!

• We can do this with a different set of
operators called bitwise operators

Writing in Binary
• For this lecture we’re going to mostly stick

with integers - unsigned integers in particular

• In memory, each integer is made up like this:

0000 0000 0000 0000
0123456789101112131415

• There are 32-bits (16 in this picture) and we
usually write them right-to-left

• This is how we write base-10 numbers too, if
you think about it - least significant # goes last

Bitwise Ops

• There are unary bitwise operators
(one argument) and binary bitwise
arguments (two arguments)

• The bitwise versions operate on the
corresponding bits of each of their
arguments)

• So for a & b, the 0th bit of a is and-ed with
the 0th bit of b, and so on

Son of Bitwise

• Bitwise AND (&): resulting bit is true only if
both input bits are true

• Bitwise OR (|): resulting bit is true if either
of the input bits are true

• Bitwise XOR (^): resulting bit is true if
exactly one of input bit is true

• Unary Bitwise NOT (~): flips each bit

Bitwise And-ing

0100 0001 0100 0000
0123456789101112131415

1100 0101 0110 1000
0123456789101112131415

0110 1001 0100 0011
0123456789101112131415

a val:

b val:

result:

a & b
Example:

Why Bother?

• This stuff is used quite often in low-level
programming

• One use often seen in high-level
programming, however:

• A boolean value is either true or false, which
can be represented by a single bit

• So we can cram 32 boolean values into a
single 32-bit integer!

Specifying Flags

• This is very common: each
potential option is often called a
flag; we can combine multiple
flags together into a single
integer

• These a few of the open mode
flags; how could we combine a
few of them together?

• Why do the values need to be
powers of 2?

ios::in 1

ios::out 2

ios::app 4

ios::ate 8

ios::nocreate 16

ios::noreplace 32

ios::trunc 64

ios::binary 128

constant name value

0000 0000 0000 0010
0123456789101112131415

ios::out

0000 0000 0001 0000
0123456789101112131415

ios::nocreate

0000 0000 0100 0000
0123456789101112131415

ios::trunc

0000 0000 0101 0010
0123456789101112131415

ios::out | ios::nocreate | ios::trunc

• In a power-of-2 constant, only a single bit will be “on”

• So we can combine many of them together without
“interfering” with other constants

Getting ‘em Out

• Now we know how to put a bunch of
constants in to a bitmask - how do we get
them out?

• Given an integer options, how do we tell if
the ios::trunc flag is set?

• How about ios::binary?

0000 0000 0100 0000
0123456789101112131415

ios::trunc

0000 0000 0101 0010
0123456789101112131415

options

0000 0000 0100 0000
0123456789101112131415

options &
ios:: trunc

0000 0000 1000 0000
0123456789101112131415

ios::binary

0000 0000 0000 0000
0123456789101112131415

options &
ios::binary

results:

= 64

= 0

• Once we’ve &-ed the options with the
constant we’re checking, the rest is easy

• If none of the bits matched (aka, the
ios::trunc bit was not set in options) the
result will be zero

• ... otherwise (if the bit was set) it’ll be non-
zero

• So we can check the whole thing with a
simple if statement:

if(options & ios::trunc)
 // ... ios::trunc was set!

be careful here... what
happens if you accidentally
use &&?

Shifting

• We use the >> and <<
operators all the time, for iostreams (cin,
cout, etc)

• ... but that’s not what these operators were
meant for!

• The iostream library turns them into stream
operators by overloading them...

• ... but in C (and therefore in C++) these are
the bitshift operators.

More Shifting
• There are two bitshift operators:

• Shift left: << (shifts bits to the left)

• Shift right: >> (shifts bits to the right)

• These look like:

• x << n

• x >> n

• ... where x and n must
be integer variables

Left-Shifting

0011 0010 1010 0111
0123456789101112131415

We can shift by any number of bits, but let’s
shift left by 4 bits. We get the following results:

Take a look at the following input:

0010 1010 0111 0000
0123456789101112131415

The bits “fall off” the high end of the integer, and the
empty spaces on the low end get filled with zeros

An Interesting Effect...

0000 0100
01234567

= 4 0000 1000
01234567

= 8

<< by 1 bit

0000 1010
01234567

= 10 0001 0100
01234567

= 20

<< by 1 bit

0000 1010
01234567

= 10 0101 0000
01234567

= 80

<< by 3 bits

... see what’s going on here?

Left Shifting
• When you left shift by n bits, you are actually

multiplying by 2

• q << 1 = q * 2

• q << 3 = q * 8

• We’ve been talking mostly about unsigned
integers, but this works for signed integers too

• Shift too far, though, and you get overflow - a
number bigger than an int can hold - and
therefore the wrong answer

• Shifts and bitwise ops are very efficient

n

Right Shifting
• When you right shift by n bits, you are actually

dividing by 2n

• q >> 1 = q / 2

• q >> 4 = q / 16

• This is all integer division, so the result will just
be the quotient - no remainder!

• This works for unsigned integers - signed
integers are much more unpredictable (depends
on how the compiler handles it)

• One thing to remember: just like
a+b, bitwise/shift operations
don’t change anything unless you
save the result!

• The result of a+b needs to be
assigned to something to have an
effect

• Similarly, a&b or a^b, etc. does
nothing unless you save the
result

• A tricksy example: unsigned u = 15;
u << 3;

More Operators

• Just like there’s i += 2 to simplify
i = i + 2, there are corresponding
operators for all the shift/bitwise
operators

• <<=, >>=, ^=, &=, |=, ~=

C++ Strings
• The C++ string class encapsulates (duh) a

string

• These tend to be much easier to work with
than C-style strings

• Also: no concerns about about length; C++
strings resize themselves as required

• Also very fast to pass by value: they use a
technique called copy on write in which
the data buffer isn’t copied until it absolutely
has to be

Declaring a string

• First, #include <string>

• string is part of the std namespace,
so using namespace std will give
you access

• Or you can use the std:: prefix:

std::string myString = “greg was here”;

std::string anotherString(“yep, still here”);

String Input
• operator>> has been overloaded for the

string class, so you can use them with an
istream:

string myString;

// reads in a single word
cin >> myString;

// reads in an entire line
getline(cin, my_string, '\n');

operator+
• The + and += operators are defined for

strings, for easy concatenation:

string one = “pointers ”;
string two = “are fun!”;
string three = one + two;
three += “ hooray!”

cout << “hey! ” + three << endl;

• Notice that this also works for regular C-style
strings as well.

Comparisons
• The string class overloads all the comparison

operators - no more strcmp()!

• Again, this is a lexicographic (dictionary-
order) comparison

string apple(“apple”);
string banana(“banana”);

if(apple == banana)
 cout << “apple == banana”;
else if(apple > banana)
 cout << “apple > banana”;
else
 cout << “apple < banana”;

Individual elements
• You can get a string’s length using the

length or size methods

• ... and access individual characters using
square brackets (the string has overloaded
operator[])

• To print out each character in a string:

for(int i = 0; i < myStr.length(); i++)
{
 cout << myStr[i] << endl;
}

Iterating Through a String

• This is the safe way to do things...

• We can’t use the usual C-string
tricks because string objects are
not guaranteed to be NULL-
terminated

for(int i = 0; i < myStr.length(); i++)
{
 cout << myStr[i];
}

Iterating Through a String
• ... or, since a string is actually an STL

container that contains a bunch of chars,
we can use STL iterators:

string::iterator iter;
for(iter = myStr.begin(); iter != myStr.end(); iter++)
{
 cout << *iter;
}

• One thing to note: iterators are
often invalidated when you change
the string, so be cautious using
them after you do

Searching
• find and rfind search for a substring; find starts

from the left, rfind starts from the right

• These return a size_type, which is basically an
unsigned int - tells you where the substring is located
with the string

• Returns string::npos upon failure

• Second (optional) parameter is where to start looking

string example(“C and C++ are fun!”);
cout << example.find(“C”) << endl;
cout << example.find(“C”, 1) << endl;

Erasing From A String
• the erase() method removes chunks

from a string

• First parameter is where to start
erasing...

• Second (optional) parameter is how
many characters to erase; if omitted
the rest of the string will be erased

string example(“I will not miss C++ class!”);
example.erase(7, 4);
cout << example << endl;

Inserting Into a String

• The insert method inserts new
characters into an existing string

• First parameter: where you want to put the
new characters

• Second parameter: the characters to insert

string example("I don't like pointers!");
example.erase(2, 10);
example.insert(2, "couldn't live without");
cout << example << endl;

Retrieving a char*
• Sometimes you need to convert a string

into a C-style character array...

• To call a function that can’t deal with C++
strings maybe

• You do this with the c_str method, which
makes sure the string is NULL-terminated
and returns a pointer to the data

string example("I'm already studying for the final!");
cout << strlen(example.c_str()) << endl;

