
Cthe basics of

Review

• What does dynamic_cast let you do?
Why is it sometimes preferable to C-style
casting?

• How do you throw an exception?

• How do you catch an exception?

• Once an exception is caught, where does
execution pick back up?

The Basics

• Compiling is a multi-stage process

• In the first stage, the code gets sent
through the preprocessor

• The preprocessor handles the code before
the actual compiling process starts

• Once the preprocessor has handled (and
maybe changed) the code, the compiler gets
to compile that code

Preprocessor Uses
• There are typically three uses for the

preprocessor:

• code - include a code file, skip chunks of
code, conditionally include code, etc.

• constants - define constants

• macros - typically, small “functions” that are
expanded at compile time

• Preprocessor typically start at the left edge
of the screen, and always start with the #
symbol (know any?)

#include

• The #include statement is actually a
preprocessor directive

• It tells the compiler to “paste” the included
file in place of the #include statement

• The compiler “sees” it as one long file

#include <iostream>

Constants
• We can use the #define directive like this:

#define PI 3.14159

• Now every time PI is used in that source file,
it will be replaced with 3.14159

• This is often used for defining constants (like
this one!)

• By convention, #define’d constants are
uppercase

#define
• #define works like this:

#define [name] [value]

• ... but [value] means “anything to
the end of the current line”

• Be ye careful:

#define PI 3.14 // I like pie!

x = PI + 1;

In other words...

• PI (or whatever) is going to get replaced
with exactly what is in the #define directive

#define PI_PLUS_ONE 3.14159 + 1

x = PI_PLUS_ONE * 5

• What is wrong with this? What could be
done to fix it?

... and one more thing...

• It’s possible to #define a name without giving
it a value.

#define GREG_WAS_HERE

• GREG_WAS_HERE is now
defined, but doesn’t have a value

• This can be useful in conjunction with another
set of directives, as we’ll see later

Conditional Compilation

• The preprocessor can be used to determine
if a chunk of code will ever make it to the
compiler

• There’s a whole set of conditional directives:

• #if, #elif, #else, #ifdef, #ifndef

#if
• The #if statement takes a numerical

argument that evaluates to true if the
argument is non-zero.

• Every #if block must end with an #endif

#if 3*4
void doStuff()
{
 // does stuff
}
#endif

this can be a simple
numerical expression - but it
can’t use any variables or
functions - why?

what happens if the
condition evaluates to zero?

DATA

#if commenting
• The #if statement can be a fast way to

“comment out” large blocks of code:

#if 0
void doStuff()
{
}

void doMoreStuff()
{
}
#endif

• The code between the
#if 0 and #endif never
gets to the compiler

• From the compiler’s
perspective, it’s as if that
code doesn’t exist!

The Others

• #else is an else; #elif
stands for else-if

• They work pretty much
like you’d expect

• The entire block still
needs to end with
#endif

#if X == 1
 printf("one\n");
#elif X == 2
 printf("two\n");
#else
 printf("three\n");
#endif

a few of

... #else and #elif

#ifdef

• The #ifdef directive is like #if...

• Instead of checking a numerical value, it
checks to see if the argument is defined

#ifdef INC_DOSTUFF

void doStuff()
{
}

#endif

this checks to see if
INC_DOSTUFF was defined,
either with or without a value

for this to work, there would
need to be a
#define INC_DOSTUFF
earlier in the code

One Application...

// data.h
class data
{
 int x;
};

• We touched on this earlier
in the semester...

• It’s easy to accidentally
include the same header file
multiple times

• data.h is getting pulled into
main.cpp directly, and via
stuff.h

• What is the problem with
this?

// stuff.h
#include “data.h”

// main.cpp
#include “data.h”
#include “stuff.h”

Include Guards
• We can use the preprocessor to make sure

the same header only gets included once per
source file:

#ifndef DATA_H
#define DATA_H

class data
{
 int x;

};

#endif

#ifndef - is true if the
argument is not defined

if DATA_H is not #defined,
then it has never been
included; include it and then
#define it so it won’t be
#included again

Macros
• The other major use of the

preprocessors is to define
macros

• A macro is a #define that
can accept arguments:

#define MACRO_NAME(arg1, arg2, ...) [code to expand]

• Macros aren’t of any particular type

• They get “expanded” directly into the code

Tricksy Macros
• A simple example:

#define MULT(x, y) x * y

• We’d use the macro like this:

int z;
z = MULT(3 + 2, 4 + 2);

• What would you expect this to expand to?
What does it expand to? How do we fix this?

How ‘bout this one?
• Another simple macro:

#define ADD_FIVE(a) (a) + 5

• But are problems is we use it like this:

int x = ADD_FIVE(3) * 3;

• What would you expect this to expand to?
What does it expand to? How do we fix this?

One more...

• There’s a weird trick you can do, using the
bitwise exclusive-or to swap two variables

• Here’s a macro to implement that:

#define SWAP(a, b) a ^= b; b ^= a; a ^= b;

• Sometimes this works fine:

int a = 5, b = 10;
SWAP(a, b);

• When would this
not work fine? How
would we fix it?

Why Macros Suck

• By now you may have realized why people
hate using macros:

• They’re picky

• They often have unintended consequences

• They aren’t typesafe

• Macros were used a lot in C - what
is often used instead in C++?

Multiline Macros
• In C/C++, a backslash at the end of the line

means “extend this line onto the next line”

• We can use this to make macros easier to
read and write

• For instance, we could rewrite the swap
macro to look like this:

#define SWAP(a, b) { \
 a ^= b; \
 b ^= a; \
 a ^= b; \
 }

class data
{
 public:
 data();
 private:
 float foo;
 bool isOrd;
 float quux;
}

data::data()
{
 foo = 5;
 isOrd = true;
 quux = -23.34;
}

what’s another way of writing
this constructor?

int*** ptr;

What is this thing?

What’s it pointing to?

What are the different
values we could mess
with here?

All About C

• Why does this matter?

• Lots of C++ code is actually C code in disguise!

• Everything you can do in C, you can do in C++.

• And vice versa: everything you can do in C++,
you can do in C.

• ... but sometimes it’s harder

The Basics

• Designed mainly for efficiency
and portability

• Less concerned about
programmer niceties:

• Less type-safe, for example

• Less “behind the scenes” stuff

C Files
• C files usually have a .c extension (as

opposed to .cpp)

• Sometimes this is important - the extension
tells the compiler how to deal with a file

• Like C++, header files have a .h extension

• In C++, standard header files usually have no
extension - #include <iostream>

• In C, even the standard header files have .h
extensions - #include <stdio.h>

C Standard Library

• Most of the “built-in” functionality of C
comes from functions that are part of the
C Standard Library

• We’ve used some of this...

• These functions are declared in many
different header files:

• stdio.h, stdlib.h, math.h, string.h, ...

bool

• The bool type is new to C++ - there
is no boolean type in C

• Instead, all comparisons are of type int

• We used this in C++ sometimes too:

• zero means false, non-zero means
true

Struct Variables

• In C++, once you’ve declared
as structure, you can
instantiate it with only the
structure name:

struct aPoint
{
 int x, y;
};

aPoint a;

• In C, the full typename is
struct aPoint - aPoint alone
is not enough

struct aPoint a;
struct aPoint* pt;

Declarations
• C++ lets you declare variables anywhere you

want in the code

• In C, declaration statements must be the first
statements in a block (like a function)

doStuff();

for(int i = 0; i < 10; ++i)
{
} int i;

doStuff();
for(i = 0; i < 10; ++i)
{
}

bad

good

enum

• an enum is a way of setting up a bunch of
named constants

• You might see this done like the code
snippet above...

• An alternate way (often used in C) is to use
an enum

#define SPRING 0
#define SUMMER 1
#define FALL 3
#define WINTER 4

enum season { SPRING, SUMMER, FALL, WINTER };

• The value of enum constants start at zero and
increment each time you move down the list

• Alternatively, some or all constants can be
explicitly given a value

• The compiler will convert enum int, but not
int enum

• Same declaration rules as a struct: size s; works
in C++. In C it must be enum size s;

enum season { SPRING, SUMMER, FALL, WINTER };

enum size { SMALL = 3, MEDIUM = 7, LARGE };

Type Casting

• C and C++ both support this form of typecasting:

int bob = (int)3.14159;

• C++ also gives you constructor-style casting:

int bob = int(3.14159);

• This does not work in C.

• Implicit conversions are mostly the same

Comments

// this is a comment
doStuff();

C++ allows single line comments...

/* this is a comment,
 and it can go on for
 quite a while */
doStuff();

C only allows comments delimited by
/* and */, which can be multi-line

Function Stuff

• C has no function overloading

• What does this mean?

• How would you work around this?

• Also: no default arguments for functions

• What does this mean?

• In C functions do not have to be declared...

• as long as they are of type int func()

Operator Overloading

• In C, there is no operator overloading

• This usually isn’t that big of a deal, though...

• What is operator overloading, exactly?

• How would you implement something
equivalent?

References
• Reference types (int& a, etc.) are new to C++,

and didn’t exist in C.

• Why does this not matter much?

void swap(int& x, int& y)
{
 int temp;
 temp = x;
 x = y;
 y = temp;
}

How do we
rewrite this
code without
using references?

iostreams

• In C, there are no iostreams

• no ifstream, ofstream, cin, cout...

• Instead, there are the functions declared in
<stdio.h>

• There are several different I/O functions but
we’re going to focus on just a few of them

printf

• printf is how you print stuff to the screen

• printf can handle a variable number of arguments

• The first argument to printf is the format string

• The format string tells printf the type of all the
forthcoming arguments, and sometimes the
formatting

• ... or it can just contain regular text

printf(format, arg, arg, arg ...)

Format String
• The format string can contain regular text,

complete with escape sequences

printf(“my name is bob\n”);

printf(“%i\n”, 42);

• The types are specified via codes called type
specifiers, which start with the % character

• The character that follows the % sign tells printf
what the type the argument is going to be

• Some common type specifers:

• %i or %d = integer

• %u = unsigned integer

• %s = string (character array, NULL terminated)

• %f = floating point

• %c = character

printf(“%s’s favorite number is %d!\n”,
 person->name, person->favNum);

More Format Strings
• The type specifier can sometimes contain

formatting information:

printf(“[%d]\n”, 17);
[17]

printf(“[%5d]\n”, 17);
[17]

printf(“[%05d]\n”, 17);
[00017]

• There are a bunch of these, depending on the
type specifier - look ‘em up if you’re curious

More I/O
• There are specialized version of

the printf function:

• sprintf - prints the output into
a string

• fprintf - prints the output to a
file

• Also input functions:

• The scanf family - gets output
from something - a file, a
string, the keyboard

void pointers
• So far, every time we’ve talked about

pointers, the pointer has a type

• int pointers point to ints, etc.

• C has many functions (mainly I/O and
memory functions) that deal with chunks of
data of unknown type

• When a function needs a pointer to data
that could be any type, it uses a void*
(a void pointer)

void pointers

• C++ tries to be much more typesafe than C

• More careful about what conversions are
allowed

• In C++, implicit casting of void* pointers is
not allowed

• What does this mean?

Example:

• The fwrite function writes a block of bytes
out to a file, without regard to what kind of
data its writing

• Any kind of data can be turned into a void*, so
we can call fwrite with any kind of data

int fwrite(const void* buffer, int size,
 int count, FILE* stream);

Dynamic Memory Allocation

• C has no new/delete operators

• Instead, dynamic memory allocation is handled by
a function named malloc, which takes the
number of bytes needed as a parameter

• malloc returns a void*, which then needs to be
cast to the correct type

char* str = (char*)malloc(50);

allocate a character array for how many characters?

Freeing Dynamically
Allocated Memory

• In C++, for every new, there has to be a delete
or we get memory leaks

• In C++, for every malloc, there has to be a free

• free is a function called on a pointer to the
allocated memory (just like delete):

char* str = (char*)malloc(50);
...
free(str);

• In C++, we can request a certain number of a certain
type:

Cow* array = new Cow[10];

• ... and the compiler figures out exactly how many
bytes of memory are needed

• In C, we need to know how many bytes we need
before calling malloc!

• So we have to be able to figure out exactly how
many bytes a Cow structure takes up in memory

Dynamic Memory Allocation

Introducing: sizeof
• sizeof is a C/C++ operator that returns

the number of bytes something takes

• We can call sizeof with a type:

printf(“%d\n”, sizeof(int));

• or we can call it with an instance of a type:

int bob = 196;
printf(“%d\n”, sizeof(bob));

• How would we allocate an array of 10 cows?

