THE BASICS OF C

Review

What does dynamic_cast let you do!

Why is it sometimes preferable to C-style
casting!

How do you throw an exception!?

How do you catch an exception?

Once an exception is caught, where does

execution pick back up?)

c::-‘:{

e

The Basics &

Compiling is a multi-stage process A

In the first stage, the code gets sent
through the preprocessor

The preprocessor handles the code before
the actual compiling process starts

Once the preprocessor has handled (and
maybe changed) the code, the compiler gets
to compile that code

Preprocessor Uses

® There are typically three uses for the
preprocessor:

® code - include a code file, skip chunks of
code, conditionally include code, etc.

® constants - define constants

® macros - typically, small “functions” that are
expanded at compile time

® Preprocessor typically start at the left edge

of the screen, and always start with the #
symbol (know any?)

#include

® The #include statement is actually a
preprocessor directive

® |t tells the compiler to “paste” the included
file in place of the #include statement

® The compiler “sees” it as one long file

#include <iostream>

Constants

® \We can use the #define directive like this:

#define PI 3.14159

® Now every time Pl is used in that source file,
it will be replaced with 3.14159

® This is often used for defining constants (like
this one!)

® By convention, #define'd constants are
uppercase

H#Hdefine

® #define works like this:

#define [name] [value]

® ... but [value] means “anything to
the end of the current line”

® Be ye careful:

#define PI 3.14 // I like pie!

PI + 1;

In other words...

® Pl (or whatever) is going to get replaced
with exactly what is in the #define directive

#define PI PLUS ONE 3.14159 + 1

= PI_PLUS ONE * 5

® What is wrong with this? What could be
done to fix it?

...and one more thing...

® |t’s possible to #define a name without glvmg
it a value.

#define GREG WAS HERE

o GREG WAS HERE is now
defined, but doesn’t have a value

® This can be useful in conjunction with another
set of directives, as we'll see later

Conditional Compilation

The preprocessor can be used to determine
if a chunk of code will ever make it to the
compiler

There’s a whole set of conditional directives:

o #Hif #Helif, Helse, #Hifdef, #Hifndef

Hif
® The #if statement takes a numerical

argument that evaluates to true if the
argument is non-zero.

® Every #if block must end with an #endif

DATA

$if 3%4 A this can be a simple

void doStuff() numerical expression - but it
{ can’t use any variables or
// does stuff functions - why?

}
#endif what happens if the

condition evaluates to zero!?

H#if commenting

® The #if statement can be a fast way to
“comment out” large blocks of code:

#if O
void doStuff() ® The code between the

{ #if 0 and #endif never
} gets to the compiler

void doMoreStuff () ® From the compiler’s
{ perspective, it’s as if that

iendif code doesn’t exist!

a few of

The Others

.. Helse and #elif

e #Helse is an else; #Helif

#if X == stands for else-if

printf("one\n");
felif X == ® They work pretty much

printf("two\n"); like you'd expect
#else
printf("three\n"); ® The entire block still

#endif needs to end with
#Hendif

Hifdef

® The #ifdef directive is like #if...

® |nstead of checking a numerical value, it
checks to see if the argument is defined

#ifdef INC DOSTUFF s this checks to see if
B INC DOSTUFF was defined,

void doStuff() either with or without a value

for this to work, there would
need to be a

#define INC DOSTUFF
earlier in the code

One Application...

// data.h
class data

{

int x;

}i

// stuff.h
#include “data.h”

// main.cpp
#include “data.h”
#include “stuff.h”

® Ve touched on this earlier
in the semester...

® |t's easy to accidentally
include the same header file
multiple times

® data.h is getting pulled into
main.cpp directly, and via

stuff.h

® What is the problem with
this?

Include Guards

® We can use the preprocessor to make sure
the same header only gets included once per
source file:

#define DATA_H argument is not defined

class data

{ if DATA_H is not #defined,

int x; then it has never been
}i included; include it and then
Hdefine it so it won’t be

EERULS #included again

Macros

® The other major use of the
preprocessors is to define
macros

® A macro is a #define that
can accept arguments:

#define MACRO NAME(argl, arg2, ...) [code to expand]

® Macros aren’t of any particular type

® They get “expanded” directly into the code

Tricksy Macros

® A simple example:

#define MULT(X, y) X * y

® \We'd use the macro like this:

int z;
z = MULT(3 + 2, 4 + 2);

® What would you expect this to expand to!?
What does it expand to? How do we fix this?

How ‘bout this one?

® Another simple macro:

#define ADD FIVE(a) (a) + 5

® But are problems is we use it like this:

int x = ADD FIVE(3) * 3;

® What would you expect this to expand to!
What does it expand to? How do we fix this?

One more...

® There’s a weird trick you can do, using the
bitwise exclusive-or to swap two variables

® Here’s a macro to implement that:

#define SWAP(a, b) a "= b; b "= a; a

® Sometimes this works fine:

® VWhen would this
not work fine? How
would we fix it?

int a
SWAP (

Why Macros Suck

® By now you may have realized why people
hate using macros:

ney’re picky

ney often have unintended consequences
® They aren’t typesafe

® Macros were used a lot in C - what
is often used instead in C++?

Multiline Macros

® |h C/C++,a backslash at the end of the line
means ‘‘extend this line onto the next line”

® Ve can use this to make macros easier to
read and write

® For instance, we could rewrite the swap

macro to look like this:

#define SWAP(a, b) {

class data
{
public:
data();
private:
float foo;
bool isOrd;
float quux;

data: :data()

what’s another way of writing
this constructor?

int*** ptr;

What is this thing?
What’s it pointing to?
What are the different

values we could mess
with here?

All About C

Why does this matter?
Lots of C++ code is actually C code in disguise!
Everything you can do in C, you can do in C++,

And vice versa: everything you can do in C++,
you can do in C.

® ...but sometimes it’s harder

The Basics

® Designed mainly for efficiency
and portability

® | ess concerned about
programmer niceties:

® | ess type-safe, for example

® |ess “behind the scenes” stuff

C Files

® C files usually have a .c extension (as
opposed to .cpp)

® Sometimes this is important - the extension
tells the compiler how to deal with a file

® |ike C++, header files have a .h extension

® |n C++,standard header files usually have no
extension - #include <iostream>

® |nh C, even the standard header files have .h
extensions - #include <stdio.h>

C Standard Library

® Most of the “built-in” functionality of C
comes from functions that are part of the

C Standard Library
® VWe've used some of this...

® These functions are declared in many
different header files:

® stdio.h, stdlib.h, math.h, string.h, ...

bool

® The bool type is new to C++ - there
is no boolean type in C

® |nstead, all comparisons are of type int
® We used this in C++ sometimes too:

® Zero means false, NOoN-Zero means
true

Struct Variables

° ++ ’
vy AP In C++, once you’ve declared
{ as structure, you can
int x, y; instantiate it with only the
bi structure name:

aPoint a;

® |n C,the full typename is
struct aPoint - aPoint alone
is not enough

struct aPoint a;
struct aPoint* pt;

Declarations

® (C++ |ets you declare variables anywhere you
want in the code

® |n C, declaration statements must be the first
statements in a block (like a function)

doStuff();

for(int 1 = 0; 1 < 10; ++1)

int i;

doStuff();

for(1 = 0; i < 10; ++1i)
{

}

#define SPRING O

tdefine SUMMER 1 enum

#define FALL 3
#define WINTER 4

® an enum is a way of setting up a bunch of
named constants

® You might see this done like the code
snippet above...

® An alternate way (often used in C) is to use
an enum

enum season { SPRING, SUMMER, FALL, WINTER };

enum season { SPRING, SUMMER, FALL, WINTER };

enum size { SMALL = 3, MEDIUM = 7, LARGE };

® The value of enum constants start at zero and
increment each time you move down the list

® Alternatively, some or all constants can be
explicitly given a value

® The compiler will convert enum P int, but not
Int p> enum

® Same declaration rules as a struct: size s; works
in C++.In C it must be enum size s;

Type Casting

® C and C++ both support this form of typecasting:

int bob = (int)3.14159;

SO gives you constructor-style casting:

int bob = 1nt(3.14159);

® This does not work in C.

® |mplicit conversions are mostly the same

Comments

C++ allows single line comments...

// this is a comment
doStuff();

C only allows comments delimited by
/* and */, which can be multi-line

/* this is a comment,
and it can go on for
quite a while */

doStuff();

Function Stuff

® C has no function overloading

® \What does this mean?

® Also: no default arguments for functions
® What does this mean!?

® |n C functions do not have to be declared...

® How would you work around this? Q

® as long as they are of type int func()

Operator Overloading

In C, there is no operator overloading
This usually isn’t that big of a deal, though...
What is operator overloading, exactly!?

How would you implement something
equivalent?

References

® Reference types (int& a, etc.) are new to C++,
and didn’t exist in C.

® Why does this not matter much?

HOW.dO VYe void swap(int& x, int& y)
rewrite this {

code without int temp;

using references? temp = xj
X = Y;
y = temp;

lostreams

® |nh C, there are no iostreams
® no ifstream, ofstream, cin, cout...

® |nstead, there are the functions declared in
<stdio.h>

® There are several different I/O functions but
we're going to focus on just a few of them

printf

printf(format, arg, arg, arg

® printf is how you print stuff to the screen
printf can handle a variable number of arguments

The first argument to printf is the format string

The format string tells printf the type of all the
forthcoming arguments, and sometimes the

formatting

... OF it can just contain regular text

Format String

® The format string can contain regular text,
complete with escape sequences

printf(“my name is bob\n”);

® The types are specified via codes called type
specifiers, which start with the % character

printf(“%i\n”, 42);

® The character that follows the % sign tells printf
what the type the argument is going to be

® Some common type specifers:

%1 or %d = integer

%U = unsigned integer

%S = string (character array, NULL terminated)
%f = floating point

%€ = character

rintf(“%$s’s favorite number is %d!\n”
14
person->name, person->favNum);

More Format Strings

® The type specifier can sometimes contain
formatting information:

printf(“[%d]\n", 17);
[17]
printf(“[%5d]\n", 17);
[17]
printf(“[%05d]\n", 17);
[00017]

® There are a bunch of these, depending on the
type specifier - look ‘em up if you'’re curious

More I/O N

® There are specialized version of
the printf function:

® sprintf - prints the output into
a string

® fprintf - prints the output to a
file

® Also input functions:

® The scanf family - gets output
from something - a file, a
string, the keyboard

void pointers

® So far, every time we'’ve talked about
pointers, the pointer has a type

® int pointers point to ints, etc.

® C has many functions (mainly I/O and
memory functions) that deal with chunks of

data of unknown type

® When a function needs a pointer to data

that could be any type, it uses a void¥*
(a void pointer)

void pointers

® C++ tries to be much more typesafe than C

® More careful about what conversions are
allowed

® In C++, implicit casting of void™® pointers is
not allowed

® \What does this mean?

Example:

int fwrite(const void* buffer, int size,
int count, FILE* stream);

® The fwrite function writes a block of bytes
out to a file, without regard to what kind of
data its writing

® Any kind of data can be turned into a void™, so
we can call fwrite with any kind of data

Dynamic Memory Allocation

® C has no new/delete operators

® |nstead, dynamic memory allocation is handled by
a function named malloc, which takes the
number of bytes needed as a parameter

® malloc returns a void¥*, which then needs to be
cast to the correct type

char* str = (char*)malloc(50);

allocate a character array for how many characters!?

Freeing Dynamically
Allocated Memory

® |n C++, for every new, there has to be a delete
or we get memory leaks

® |nh C++, for every malloc, there has to be a free

® free is a function called on a pointer to the

allocated memory (just like delete):

char* str = (char*)malloc(50);

free(str);

Dynamic Memory Allocation

® |n C++, we can request a certain number of a certain
type:

Cow* array = new Cow[10];

® ... and the compiler figures out exactly how many
bytes of memory are needed

® |n C, we need to know how many bytes we need
before calling malloc!

® So we have to be able to figure out exactly how
many bytes a CoOw structure takes up in memory

Introducing: sizeof

sizeof is a C/C++ operator that returns
the number of bytes something takes

We can call sizeof with a type:

printf(“%d\n”, sizeof(int));

or we can call it with an instance of a type:

int bob = 196;
printf(“%d\n”, sizeof(bob));

How would we allocate an array of 10 cows!?

