
dynamic
casting,
error

handling,
exceptions,
namespaces

Review

void swap(int& a, int& b)
{
 int temp = a;
 a = b;
 b = temp;
}

class ReadOnly
{
 public:
 Data(int v)
 {
 val = v;
 }
 int getVal()
 {
 return val;
 }
 private:
 int v;
};

• How do we turn these
code bits into a template
function/class?

STL review

• Write a simple program that uses the STL
vector class:

• Adds some random integers

• Sorts them

• sort(iterator, iterator);

• Prints them all out using iterators

Pointer Problem
• Let’s say we have an Animal*.

• We want a Shark*, where Shark is a class
derived from Animal*.

• rampage() is a method defined only in Shark.

• Will this work?

Animal* a = (some random Animal ptr)
Shark* s = (Shark*)a;
Shark->rampage();

Fish/Shark/Boom

• Yes - but this will only work if the pointer
is actually a Shark!

• This will cause Very Bad Things to happen:

Animal* a = new Fish();
Shark* s = (Shark*)a;
s->rampage();

• a is not a Shark, so there is no rampage
method in a! ... Boom.

Casting and Type Errors

• This is a type error : we’re trying to turn a
pointer into something it’s not

• The C casting operator lets you do this,
which is why its use is not encouraged with
classes

• Instead, we have something new: the
dynamic_cast operator thingy

Introducing:
dynamic_cast

• dynamic_cast attempts to convert the
parameter (a) into the requested type
(Shark*)

• If successful it returns a valid pointer

• If not, it returns NULL!

Animal* a = new Fish();
Shark* s = dynamic_cast<Shark*>(a);
if(s)

s->rampage();

Asserts

• C/C++ includes a function called assert(),
which is widely used in debugging

• assert is called with a condition: we want
the condition to be true

• If the condition is true, assert() does nothing; if
the condition is false, assert() prints a message
and ends the program

// get the first node in the list
Node* ptr = list.getFirstNode();

// this should always return a valid ptr
assert(ptr != NULL);

• Here’s an example:

• We want to make sure a pointer is not NULL

• While debugging, we use assert; if the pointer
is NULL when assert is called, the program
will terminate with a helpful message

• very helpful, but for “real” programs you often
want better debugging can this!

Error Handling
• With simple programs, we assume

everything is going to work... but programs
sometimes have errors!

deleteFile(“c:\\temp.txt”);

• the file might not exist

• It might not be delete-able

• something else might go wrong

Example:

Return Codes
• By convention, C functions use return values to

indicate success/failure (sometimes known as
return codes)

• This can be a pain, because you may have to
sometimes check for multiple different errors
every time you call a function

int returnVal = deleteFile(“c:\\temp.txt”);
if(returnVal == ERR_FILE_DOES_NOT_EXIST)
 cout << “File Does Not Exist”;
else if(returnVal == ERR_FILE_NOT_WRITEABLE)
 cout << “File not writable!”;
// ... etc.

Introducing C++
Exceptions

• So... we can’t ignore error checking and just
assume everything is going to work

• But error-checking every single function is a
pain

• C++ introduced an alternative
mechanism, called exceptions

Exceptions
• Basic idea: you try to do something in C++,

specifically the sorts of things that might fail

• opening a file, requesting memory, etc.

• If that fails, your code throws an exception: a
small object, an integer, etc.

• Your code catches that exception, and deals
with it in an exception handler

• If nothing goes wrong, none of the error
handing code gets called - the program
proceeds normally and all handlers are ignored

Exception Structure

try
{
 // Do something that could cause an error
 // throw an exception on error
}
catch(exception)
{
 // handle the error: print a
 // message, quit the program...
 // whatever.
}

• We arrange code that uses exceptions in
try/catch blocks:

You gonna get
throwed, sucka!

That Mr. T is
helluva tough!

• To throw an
exception, you simply
use the throw
keyword:

throw 42;

throw MadCow(“moo!!”);

or...

Throwing Exceptions

Try/Catch Blocks
• Every try block requires at least one catch

(there can be more than one).

• Each catch block needs to accept a single
parameter of a specific type:

catch(int e)
{
 cout << “INT:” << e;
}
catch(MadCow e)
{
 cout << “MOO!” << e.moo();
}

• The appropriate
exception handler will
get called, depending
on what kind of
exception gets
thrown

Catch-all Block

• We can also define a catch-all exception handler:
this will get called if none of the other exception
handlers “match”

• There’s no parameter to the catch-all! (why not?)

catch(int e) {}
catch(MadCow e) {}

catch(...) // catchall handler
{
 cout << “default!” << endl;
}

Code Flow
• After an exception is

thrown and caught,
execution picks up again
after the exception
handler!

• It does not start again
after the throw
statement

• What is the output of
this program?

int main()
{
 cout << "1";
 try
 {
 cout << "2";
 throw 42;
 cout << "3";
 }
 catch(...)
 {
 cout << "BOOM!";
 }
 cout << "4";

 return 0;
}

Nesting Exceptions
• You can have multiple levels of try/catch blocks

(much like if/else statements)

• If an exception is thrown:

• The first matching exception handler in the current
level is called

• If there isn’t one, higher levels are tried

• If no matching handler is found at any level, the
program terminates

• This is also what happens if you throw outside a
try/catch block!

cout << "1";
try
{
 cout << "2";
 try
 {
 cout << "3";
 throw 42.3f;
 cout << "4";
 }
 catch(int a)
 {
 cout << "boom one;
 }
 cout << "5";
}
catch(float f)
{
 cout << "boom two;
}
cout << "6";

• What is the output of this
impressively dense chunk
of code?

• Remember: after an
exception has been
handled, the next code to
be executed is the code
after the handler

Example

What Do We Throw?
• Most any type (object, built-in, etc) can be thrown

• Often there will be a special exception class:

• C++ has a standard base class for exceptions
called exception that can be used as a base class

class myexception: public exception
{
 virtual const char* what() const
 {
 return "My exception happened";
 }
}

Putting This Into Context
• Earlier we used the (fictional) deleteFile

function as an example:

int returnVal = deleteFile(“c:\\temp.txt”);
if(returnVal == ERR_FILE_DOES_NOT_EXIST)
 cout << “File Does Not Exist”;
else if(returnVal == ERR_FILE_NOT_WRITEABLE)
 cout << “File not writable!”;
// ... etc.

• If we rewrite this to use exceptions, we can
make the code cleaner to read

try
{
 deleteFile(“c:\\temp.txt”);
}
catch(exception& e)
{
 cout << “Delete Error: “
 << e.what() << endl;
}

• Since we’re catching a reference to an exception, we
can catch derived classes too (such as FileException)

• Also note that exceptions can be thrown by functions
(aka code outside of this function)

// in deleteFile
...
if(somethingWrong)
{
 FileException fs;
 throw fs;
}

Exceptions Philosophy
• There’s disagreement on how

widely exceptions should be
used...

• ... they sometimes make it
hard to tell whether code will
be executed

• Can you tell whether Two()
will be executed just by
looking?

• Three()? Four()?

try
{
 One();
 Two();
 Three();
 Four();
 Five();
}
catch(...)
{
 cout << “err”;
}

Goodly Exceptions
• When using exceptions:

• Use them for exceptional circumstances -

• don’t have your code depend on them!

• one reason: exceptions are expensive

• try to structure your code so that
exceptions are only used when needed

• helps keep things readable

Problem...

• This code is problematic.

• What kind(s) of error(s)
is it going to cause?

• What is the scope of
these classes?

class Data
{
 // contents ignored
};

class Data
{
 // contents ignored
};

vendorone.h vendortoo.h

#include “vendorone.h”
#include “vendortoo.h”

int main()
{
 return 0;
}

code.cpp

Namespaces

• Namespaces are a new(ish) C++ feature
designed to solve this problem by “grouping”
symbols so they don’t clash with each other

• We’ve been using this all semester: we can
use cout two different ways:

•using namespace std;
cout << “hello”;

•std::cout << “hello” << endl;

Applying Namespaces

• A namespace introduces a scope...

• Neither Data class is now in the global scope, so
they can both co-exist happily

• Their names are now VendorOne::Data and
VendorToo:Data

namespace VendorOne
{
 class Data
 {
 // contents ignored
 };
}

namespace VendorToo
{
 class Data
 {
 // contents ignored
 };
}

vendorone.h vendortoo.h

Declaring Namespaces

• Namespaces can be
declared more than
once

• The contents of a
namespace are the
accumulation of all the
declarations the
compiler has seen so
far

namespace bob
{
 int x;
 int y;
}

// at this point bob
// contains x and y

namespace bob
{
 int z;
}

// at this point bob
// contains x, y, and z

Using Namespace’d Items
• We have a few options to use the Data class:

#include “VendorOne.h”

int main()
{
 VendorOne::Data bob;
}

#include “VendorOne.h”
using namespace VendorOne;

int main()
{
 Data bob;
}

• The using keyword makes everything from
that namespace available in the global scope

• What happens if we do this...

using namespace VendorOne
using namespace VendorToo;

Conflicting Namespaces
• This isn’t a problem unless we try and use

the Data class

• If we do, then there’s a conflict!

#include “VendorOne.h”
#include “VendorToo.h”
using namespace VendorOne;
using namespace VendorToo;

int main()
{
 Data bob;
}

error

• How do you fix this?

The using keyword
• As we’ve seen, the using keyword can make an

entire namespace available for us

• It can also make individual pieces of a namespace
available

#include “VendorOne.h”
using VendorOne::Data;

int main()
{
 Data bob;
}

• This makes only the Data
class from VendorOne
available - not anything else
in that namespace

• You can use this to import
functions, too, and even class
member functions

Unnamed Namespaces
• A namespace without a name is

(duh) called an unnamed
namespace

• Elements in an unnamed
namespace can be accessed with
or without the scope resolution
operator

• Internally, an unnamed namespace
has a privately generated name

• Can’t clash with unnamed
namespaces from other source
files!

#include <iostream>
using namespace std;

namespace
{
 int x;
}

namespace
{
 int q;
}

int main()
{
 q = 0;
 cout << ::x;
 return 0;
}

A new thing...

• We often find ourselves doing stuff like this:

• ... where we just want to execute a single
statement based on the outcome of some
condition (here, setting a value).

int bob;

if(someConditionIsTrue)
 bob = 17;

else
bob = 96;

A Shortcut:

• C++ provides us a nifty shortcut to do this sort
of thing:

• The ternary operator!

• (what does ternary mean?)

An Example

int bob;

if(someCondition)
 bob = 17;

else
bob = 96;

int bob = someCondition ? 17 : 96;

This unwieldy piece of code:

can be reduced to this:

Anatomy of the Ternary
Operator

condition ? truePart : falsePart

this would go in
the if statement the single statement that gets

executed if condition is
true

the single statement that gets
executed if condition is false

Usages

• What is this good for?

• Shortening code

• Assigning const values conditionally

int max(int a, int b)
{
 return a > b ? a : b;
}

bool correct = getValue();
const int PI = correct ? 3.14 : 92.8;

Question
• Hopefully you

should know the
answer to this by
now...

• Why might the
ternary operator
not always be a
good idea?

Bad Code!

• On the other end of the
conditional execution
scale:

• When you are testing a
single value against a lot
of conditions, you get a
lot of hard-to-read code

• Like this!

int input = getInput();

if(input == 0)
doStuff();

else if(input == 1)
doSomethingElse();

else if(input == 2)
doAThirdThing();

else if(input == 3)
playSpades();

else if(input == 4)
watchScrubs();

else if(input == 5)
goBirdWatching();

else if(input == 6)
eatHamburger();

the switch statement

• The switch statement
is often a more
elegant, sometimes
faster way to do this

• switch tests a single
integer variable
against a large
number of conditions

• Here we’re checking
input against 0 - 6

int input = getInput();

switch(input)
{

case 0: doStuff();
 break;
case 1: doSomethingElse();
 break;
case 2: doAThirdThing();
 break;
case 3: playSpades();
 break;
case 4: watchScrubs();
 break;
case 5: goBirdWatching();
 break;
case 6: eatHamburger();
 break;

}

int input = getInput();

switch(input)
{

case 0: doStuff();
 break;
case 1: doSomethingElse();
 break;
case 2: doAThirdThing();
 break;
case 3: playSpades();
 break;
case 4: watchScrubs();
 break;
case 5: goBirdWatching();
 break;
case 6: eatHamburger();
 break;

}

entire switch
statement enclosed

in curly braces

this can be any integer
expression - in

parenthesis, just like an
if statement

switch keyword

case statement:
must be unique!

Case
Statements

char grade = getGrade();

switch(grade)
{

case ‘A’: callMom();
 cout << “yay!”;
 postOnFridge();
 break;

case ‘D’: sigh();

case ‘F’: grumble();
 cout << “boo.”;
 studyHarder();
 break;

}

• When the input value is
equal to a case value,
everything until the next
break is executed

• Even code in other case
statements!

• this is called falling through

• Any code that can go in
a function can go in a
case statement

Default
Statements

• Code in the default
statement is executed
if none of the case
statements are true

• There can be only one
of these per switch
statement

char grade = getGrade();

switch(grade)
{

case ‘A’: callMom();
 cout << “yay!”;
 postOnFridge();
 break;

case ‘D’: sigh();

case ‘F’: grumble();
 cout << “boo.”;
 studyHarder();
 break;

default: cout << “meh.”;
 eatHamburger();
 break;

}

A Random Note About C++
Conditionals

bool one()
{
 cout << “one()” << endl;
 return false;
}

bool two()
{
 cout << “two()” << endl;
 return false;
}

int main()
{
 if(one() && two())
 cout << “true” << endl;
 return 0;
}

What is the output
of this program?

Minimal Evaluation

• C++ uses a strategy called minimal evaluation or
short circuit evaluation to avoid doing unnecessary
work

• This comes into play with the && operator, which is
evaluated left-to-right:

if(one() && two())
 cout << “true” << endl;

(returns false)

Minimal Evaluation

• Keep minimal evaluation in mind
when writing conditional expressions

• This can actually be really handy!

• Here, we won’t access ptr->value unless ptr
is non-null

if(ptr && ptr->value == 42)
{

// do stuff
}

