DYNAMIC
CASTING,

ERROK
HANDLING,
EXCEPTIONS,
NAMESPACES

Review

void swap(int& a, int& b) class ReadOnly

{ {
int temp = aj; public:
a = b; Data(int v)
b = temp; {

val = v;

}
int getVal()

{

® How do we turn these
code bits into a template 3}
function/class? private:

int v;

return val;

STL review

® Write a simple program that uses the STL
vector class:

® Adds some random integers

® Sorts them

e sort(iterator, iterator);

® Prints them all out using iterators

Pointer Problem

® Let’s say we have an Animal*.

® We want a Shark™, where Shark is a class
derived from Animal*.

® rampage() is a method defined only in Shark.

® Will this work?

Animal* a = (some random Animal ptr)
Shark* s = (Shark*)a;
Shark->rampage () ;

Fish/Shark/Boom

® Yes - but this will only work if the pointer
is actually a Shark!

® This will cause Very Bad Things to happen:

Animal* a = new Fish();
Shark* s = (Shark*)a;
s—->rampage() ;

® ais hot a Shark, so there is no rampage
method in a! ... Boom.

Casting and Type Errors

® This is a type error : we're trying to turn a
pointer into something it’s not

® The C casting operator lets you do this,
which is why its use is not encouraged with
classes

® |nstead, we have something new: the
dynamic_cast operator thingy

Introducing:
dynamic_cast

® dynamic_cast attempts to convert the

parameter (a) into the requested type
(Shark*)

® |[f successful it returns a valid pointer

® If not, it returns NULL!

Animal* a = new Fish();
Shark* s = dynamic cast<Shark*>(a);
1f(s)

s—=>rampage() ;

Asserts

® C/C++ includes a function called assert(),
which is widely used in debugging

® assert is called with a condition: we want
the condition to be true

® |[f the condition is true, assert() does nothing; if
the condition is false, assert() prints a message
and ends the program

Here’s an example:

We want to make sure a pointer is not NULL

While debugging, we use assert; if the pointer
is NULL when assert is called, the program
will terminate with a helpful message

very helpful, but for “real” programs you often

want better debugging can this!

// get the first node in the list
Node* ptr = list.getFirstNode();

// this should always return a valid ptr
assert(ptr != NULL);

Error Handling

® With simple programs, we assume
everything is going to work... but programs
sometimes have errors!

Example:

deleteFile(“c:\\temp.txt”);

® the file might not exist
® |t might not be delete-able

® something else might go wrong

Return Codes

® By convention, C functions use return values to
indicate success/failure (sometimes known as
return codes)

® This can be a pain, because you may have to
sometimes check for multiple different errors

every time you call a function

int returnval deleteFile(“c:\\temp.txt”);

if(returnval == ERR FILE DOES NOT EXIST)
cout << “File Does Not Exist”;

else if(returnvVal == ERR FILE NOT WRITEABLE)
cout << “File not writable!”;

// ... etc.

Introducing C++
Exceptions

So... we can’t ignore error checking and just
assume everything is going to work

But error-checking every single function is a
pain

C++ introduced an alternative
mechanism, called exceptions

Exceptions

® Basic idea: you try to do something in C++,
specifically the sorts of things that might fail

® opening a file, requesting memory, etc.

o |[f that fails, your code throws an exception: a
small object, an integer, etc.

® Your code catches that exception, and deals
with it in an exception handler

f nothing goes wrong, none of the error

nanding code gets called - the program
broceeds normally and all handlers are ignored

Exception Structure

® We arrange code that uses exceptions in
try/catch blocks:

try
{

// Do something that could cause an error
// throw an exception on error

}

catch(exception)
{
// handle the error: print a

// message, quit the program...
// whatever.

Throwing Exceptions

® Jo throw an
exception, you simply That Mr. T is
use the throw helluva tough!

keyword:

You gonna get
throwed, suckal

throw 42;

or...

throw MadCow(“moo!!");

Try/Catch Blocks

® Every try block requires at least one catch
(there can be more than one).

® Fach catch block needs to accept a single
parameter of a specific type:

® The appropriate catch(int e)
exception handler will | 1
get called, depending | ;

on what kind of catch(MadCow e)
: {
excePtlon 8et5 cout << “MOO!" << e.moo();

thrown }

cout << “INT:"” << e;

Catch-all Block

We can also define a catch-all exception handler:

this will get called if none of the other exception
handlers “match”

There’s no parameter to the catch-all! (why not?)

catch(int e) {}
catch(MadCow e) {}

catch(...) // catchall handler
{

cout << “default!” << endl;

}

int main()
{
cout << "1";
try
{
cout << "2";
throw 42;
cout << "3";:

}
catch(...)

{
cout << "BOOM!";

}

cout << "4";

return 0O;

Code Flow

® After an exception is
thrown and caught,
execution picks up again

dfter the exception
handler!

It does not start again
after the throw
statement

What is the output of
this program?

Nesting Exceptions

® You can have multiple levels of try/catch blocks
(much like if/else statements)

® |f an exception is thrown:

® The first matching exception handler in the current

evel is called
f there isn’t one, higher levels are tried

f no matching handler is found at any level, the
Drogram terminates

® This is also what happens if you throw outside a
try/catch block!

cout << "1":
try
{
cout << "2":
try
{
cout << "3";
throw 42.3f;
cout << "4";

}

catch(int a)

{

cout << "boom one;

}

cout << "5":

}
catch(float f)

{

cout << "boom two;

}

cout << "6";

Example

® What is the output of this

impressively dense chunk
of code!

Remember: after an
exception has been

handled, the next code to
be executed is the code
after the handler

What Do We Throw?

® Most any type (object, built-in, etc) can be thrown

e Often there will be a special exception class:

® C++ has a standard base class for exceptions
called exception that can be used as a base class

class myexception: public exception

{

virtual const char* what() const

{

return "My exception happened";

}
}

Putting This Into Context

® Earlier we used the (fictional) deleteFile
function as an example:

int returnval deleteFile(“c:\\temp.txt”);

if(returnvVal == ERR FILE DOES NOT EXIST)
cout << “File Does Not Exist”;

else if(returnval == ERR FILE NOT WRITEABLE)
cout << “File not writable!”;

// ... etc.

® |f we rewrite this to use exceptions, we can
make the code cleaner to read

try

{
deleteFile(“c:\\temp.txt”);

catch(exception& e)

{

// in deleteFile cout << “Delete Error: *“
<< e.what() << endl;

if(somethingWrong)

{

FileException fs;
throw fs;

® Since we're catching a reference to an exception, we
can catch derived classes too (such as FileException)

® Also note that exceptions can be thrown by functions
(aka code outside of this function)

Exceptions Philosophy

® There’s disagreement on how
widely exceptions should be
used...

... they sometimes make it
hard to tell whether code will
be executed

Can you tell whether Two()
will be executed just by
looking!?

® Three()! Four()?

Goodly Exceptions

® When using exceptions:
® Use them for exceptional circumstances -

® don’t have your code depend on them!

® one reason: exceptions are expensive

® try to structure your code so that
exceptions are only used when needed

® helps keep things readab

Problem...

vendorone.h vendortoo.h

class Data class Data

{ {

// contents ignored // contents ignored

}i }i

code.cpp

® This code is problematic.

#include “vendorone.h”

rEnElile SeerEee. b ® What kind(s) of error(s)
Arts g | is it going to cause!

{
return 0; ® What is the scope of

: these classes!?

Namespaces

® Namespaces are a new(ish) C++ feature
designed to solve this problem by “grouping”
symbols so they don’t clash with each other

® We've been using this all semester: we can
use cout two different ways:

e using namespace std;
cout << “hello”;

e std::cout << “hello” << endl;

Applying Namespaces

vendorone.h vendortoo.h

namespace VendorOne namespace VendorToo

{ {

class Data class Data

{ {

// contents ignored // contents ignored
}i }i
} }

® A namespace introduces a scope...

® Neither Data class is now in the global scope, so
they can both co-exist happily

® Their names are now YVendorOne::Data and
VendorToo:Data

Declaring Namespaces

namespace bob

® Namespaces can be {
declared more than
once }

int x;
int y;

// at this point bob
// contains x and y

The contents of a
namespace are the

accumulation of all the ponespace EEE
declarations the int z;

. }
compiler has seen so

ﬁar // at this point bob
// contains x, y, and z

Using Namespace'd ltems

® We have a few options to use the Data class:

#include “VendorOne.h”

int main()

{

VendorOne: :Data bob;

}

#include “VendorOne.h”
using namespace VendorOne;

int main()

{
Data bob;

}

® The using keyword makes everything from
that namespace available in the global scope

® What happens if we do this...

using namespace VendorOne
using namespace VendorToo;

Conflicting Namespaces

® This isn’t a problem unless we try and use
the Data class

® |f we do, then there’s a conflict!

#include “VendorOne.h” e How do you fix this?

#include “VendorToo.h”
using namespace VendorOne;
using namespace VendorToo;

int main()

{
Data bob;

} N

The using keyword

® As we've seen, the using keyword can make an
entire namespace available for us

® |t can also make individual pieces of a namespace

available

#include “VendorOne.h”
using VendorOne: :Data;

int main()

{
Data bob;

}

® This makes only the Data
class from VendorOne
available - not anything else
in that namespace

® You can use this to import
functions, too, and even class
member functions

Unnamed Namespaces

#include <i°5trea‘;‘2 ® A namespace without a name is
using namespace std;
(duh) called an unnamed

namespace namespace
{

N3 55 Elements in an unnamed
namespace can be accessed with
namespace or without the scope resolution
{ operator

}

int qg;

}
Internally, an unnamed namespace

int main() has a privately generated name

0; Can’t clash with unnamed

cout << ::X;
return 0; namespaces from other source
files!

A new thing...

® We often find ourselves doing stuff like this:

int bob;

if(someConditionIsTrue)
bob = 17;

else
bob = 96;

® ... where we just want to execute a single
statement based on the outcome of some

condition (here, setting a value).

A Shortcut:

® C++ provides us a nifty shortcut to do this sort
of thing:

® The ternary operator!

® (what does ternary mean?)

An Example £

This unwieldy piece of code:

int bob;

if(someCondition)
bob = 17;

else
bob = 96;

can be reduced to this:

int bob = someCondition ? 17 : 96;

Anatomy of the Ternary
Operator

condition ? truePart : falsePart
A A

1.11is would go in
the if statement

the single statement that gets

executed if condition is
true

the single statement that gets
executed if condition is false

® What is this good for!?

® Shortening code

{

return

}

int max(int a, int b)

a>b ? a : b;

® Assigning const values conditionally

bool correct =
const int PI

getValue();
correct ? 3.14

: 92.

87

Question

® Hopefully you
should know the
answer to this by
now...

Why might the
ternary operator
not always be a
good idea!

Bad Code!

® On the other end of the int input = getInput();
conditional execution

if(input == 0)

scale: doStuff();

else if(input == 1)

® VWhen you are testing a doSomethingElse();
. . else if(input ==)
single value against a lot doAThirdThing () ;
of conditions, you get a else if(input == 3)
playSpades();
lot of hard-to-read code else if(input == 4)

watchScrubs();

® |ike this! else if(input == 5)
goBirdWatching();

else if(input == 6)
eatHamburger();

the switch statement

s int input = getInput();
® [he switch statement
switch(input)

is often a more (
elegant, sometimes case 0: doStuff();

break;
faSter Wa)’ to CIO thIS case 1: doSomethingElse();

break;

switch tests a single case 2: doAThirdThing();

break;

integer variable case 3: playSpades();
against a large break;

case 4: watchScrubs();

number of conditions break;

case 5: goBirdWatching();

Here we're checking preak;

case 6: eatHamburger();

input against 0 - 6 break;

this can be any ir?teger Aﬁﬁ_o\u E D“"

expression - in
parenthesis, just like an
if statement

input = getInput();

y switch(input)

{
/////’/////’ case 0: doStuff();
break;

switch keyword : doSomethingElse();

break;

case statement: : doAThirdThing();
break;

must be unique! : playSpades();

break;
: watchScrubs();

entire switch break;

: goBirdWatching();
statement enclosed T

in curly braces : eatHamburger();

* break;
}

Case
Statements

® VWhen the input value is
equal to a case value,

everything until the next iwitch(grade)
break is executed e 978 eI,

cout << “yay!”;

® Even code in other case postOnFridge();
’ break;
statements!

char grade = getGrade();

. , : sigh();
® this is called falling through

: grumble();
® Any code that can go in cout << “boo.";

. . studyHarder () ;
a function can go ina break;
case statement

Default
Statements

char grade = getGrade();

. switch(grade)
® Code in the default {
case ‘A’': callMom();

statement is executed
) cout << “yay!”;
if none of the case postOnFridge();

b k;
statements are true res

: sigh();
® There can be only one
: grumble();

of these per switch Sout << “hoo.
statement studyHarder () ;

break;

1// default: cout << “meh.”;
eatHamburger () ;
break;

A Random Note About C++
Conditionals

bool one()

{

cout << “one()” << endl;
return false;

}

bool two()
{

cout << “two()"” << endl;
return false;

}

int main()

{
if(one() && two())

cout << “true” << endl;

et 0 What is the output
of this program?

Minimal Evaluation

® C++ uses a strategy called minimal evaluation or
short circuit evaluation to avoid doing unnecessary
work

® This comes into play with the && operator, which is
evaluated left-to-right:

\

if(one() && two())
cout << “true” << endl;

(returns false)

Minimal Evaluation

® Keep minimal evaluation in mind
when writing conditional expressions

® This can actually be really handy!

if(ptr && ptr->value == 42)

{
// do stuff

}

® Here, we won’t access ptr->value unless ptr
is non-null

