
Templates,
STL, & some
Conditional

stuff

Fruit Veggie

FoodItem

?

Tomato

Nobody seems to be able
to agree whether
Tomato should be
derived from Fruit or
from Veggie.

How could we solve this
dilemma and make
everybody happy?

What would be the
problems with doing this,
and how might we
address those?

Stream Revue
• How do you read in an

entire line from cin?

• What object do we use for
opening files for output?
For input?

• How would we check to
see if our output object
has any errors?

• What are these operators
called? << >>

More Revue
class time
{
 private:
 int hour, min;
};

• How would we go
about fixing this class so
we can use cin/cout?

• How would we go
about fixing this class so
we can use the addition
operator on it?

• How would we make
this code compile and
run properly?

time u, t;
t = u;

class time
{
 public:
 void chime();
 protected:
 int hour, min;
};

class secTime : public time
{
 protected:
 int sec;
};

void doStuff(time t)
{
 // ...
}

int main()
{
 secTime st;
 doStuff(st);
}

Even More Revue!

Does this code work?
What be wrong with it?

Swappety
Swap Swap

• Here we have a perfectly good swap function

• This works really well - as long as we want to
only swap integers!

void swap(int& a, int& b)
{
 int temp = a;
 a = b;
 b = temp;
}

• What if we want to swap
some floating point
values? Will this work?

float a = 5.2, b = 7.6;
swap(a, b);

Lots of Overloading
• Nope.

• To make this work
for floating point
values, we’d need to
write a whole ‘nuther
function, that does
the exact same thing!

• Only difference is the
type.

• This is kinda dumb.

void swap(int& a, int& b)
{
 int temp = a;
 a = b;
 b = temp;
}

void swap(float& a, float& b)
{
 float temp = a;
 a = b;
 b = temp;
}

void swap(Cow& a, Cow& b)
{
 Cow temp = a;
 a = b;
 b = temp;
}

bad!

Intro to Templates
• If the function is exactly the same except

for the type, we can generalize it so it will
work for any type!

• This is done via the magical and amazing
wonder of C++ templates!

• This allows us to write a function once, and
use it for any C++ type - built in type,
class, etc.

• This is C++’s implementation of the generic
programming paradigm

A Generic Swap Function
That Doesn’t Suck

• This is the exact same
thing as the integer
version, except:

• All int’s have been
replaced with T’s

• There’s a new line
that declares this to
be a template function

template <class T>
void swap(T& a, T& b)
{
 T temp = a;
 a = b;
 b = temp;
}

• Now the compiler will
replace T with whatever
type we want! (int, float,
MooCow, etc... whatever)

Explaining Further

template <class T>
void swap(T& a, T& b)
{
 T temp = a;
 a = b;
 b = temp;
}

This says the following
(single) function is a
template function

We can also use the
typename keyword here
instead of class - the
two are equivalentT is conventional, but we

can use any name to
“rename” the type

Calling It

• Now that we’ve got this generic swap
function, we have to call it

• The function doesn’t actually exist until we tell
it what type to use

• We do that by appending <type> onto the
function name

float a = 5, b = 7;
swap<float>(a, b);

The type we want the function to swap

Types
• You’re not limited to

a single type;
template functions
can take multiple
types!

• This template
function takes two
types

• Could be anything;
we’re giving it int
and MooCow

template <class T, class U>
void swap(T& a, T& b, U& c)
{
 U randomVar = c;
 T temp = a;
 a = b;
 b = temp;
}

int main()
{
 MooCow cow;
 int a = 5, b = 10;

 swap<int,MooCow>(a,b,cow);
 return 0;
}

Template Classes
• So far today, we’ve only done

template functions

• We can template-ize entire classes
too!

• This is arguably more useful: there
are many classes that can be used
for many different types!

• Like container classes: stack, queue,
binary tree, etc.

The Int Version

• Here’s a complete
implementation of a
simple array class

• It can only use ints -
that’s all it’s written
for!

• With templates we
can make the class
generic and reusable!

class array
{
 public:
 int get(int ix);
 void set(int ix, int val);

 private:
 int data[10];
};

int array::get(int ix)
{
 return data[ix];
}

void array::set(int ix, int val)
{
 data[ix] = val;
}

template <class T>
class array
{
 public:
 T get(int ix);
 void set(int ix, T val);

 private:
 T data[10];
};

• This is the
template-ized
version - changes
highlighted in red

• This class will be
instantiated with
type T - T could
be any type!

• So all ints have
been replaced
with Ts in the
class declaration

The template line applies only to
the single thing (class or function)
that follows it!

Class Declaration

Class Definition
• Each member

function in the class
needs its own
template line (when
defined outside the
class)

• Also, array::get()
isn’t enough - now
we need to use
array<T>::get()

template <class T>
T array<T>::get(int ix)
{
 return data[ix];
}

template <class T>
void array<T>::set(int ix, T val)
{
 data[ix] = val;
}

(functions from the template array class)

Instantiating Template Classes

• When you call a template function, you pass
in the types as part of the function name:

swap<int>(a, b);

• When you instantiate a template class, the
types become a part of the class name!

array<float> stuff;
stuff.set(0, 3.234);

What’s Happening?

• Each time you instantiate a template class with a
new type (or set of types), the compiler creates
an entirely different class!

array<float>

The compiler will generate a different set of code for:

... than it will for:

array<MooCow>

Non-Type Parameters

• Templates can also be
declared with non-type
parameters: just regular
types, like an integer

• In this example:

• every T will be
replaced by int

• every N will be
replaced by 17

template <class T, int N>
void func(T& a)
{
 T bob = N*2;
 a = bob;
}

int var;
func<int, 17>(var);

Default Template Values

• In this normal function, if we don’t supply a value
for the repeat function, it’s automatically set to 0.

• We can do the same sort of thing with templates:

void print(char* s, int repeat = 0)

template <class T=int, int N=23>
void func(T& a)
{
 T bob = N*2;
 a = bob;
}

int bob;
func<>(bob);

• If we don’t supply
types to func(), they
get set to int and 23

One Issue:

• Normally when we’re designing big classes,
we try and keep the definition separate from
the declaration

• Helps things compile faster!

• Easier to deal with

• Since templates are compiled “on-demand”,
the entire class has to be in the same file.

• This is usually a header file

• Coding: let’s take the simple myArray class
we made earlier, and turn it into a template
class

Intro to the STL

• In the C language, if you wanted a data
structure, you had to write it yourself

• This was a pain

• With C++ and templates, we can create a
generic library of data structures and routines
that apply to nearly any data type

• There’s a standard one called the STL:
Standard Template Library

Stuff in the STL
• The STL contains a bunch of different data structures for

your use: vector, list, deque, set, map, hash_set, etc.

• There are also implementations of algorithms that operate
on these data structures (sorting, etc)

• The STL is very large and complicated - we’re only going to
cover some of the basics here

• STL can be hard to debug - check out the kinds of error
messages you can get!

stl_algo.h: In function `void __merge_sort_loop<_List_iterator <int,int &,int *>,
int *, int>(_List_iterator<int,int &,int *>, _List_iterator<int,int &,int *>, int
*, int)': instantiated from `__merge_sort_with_buffer <_List_iterator<int,int
&,int *>, int *, int>(_List_iterator<int,int &,int *>, _List_iterator<int,int
&,int *>, int *, int *)' instantiated from `__stable_sort_adaptive<
_List_iterator<int,int &,int *>, int *, int>(_List_iterator <int,int &,int *>,
_List_iterator<int,int &,int *>, int *, int)' instantiated from here no match for
`_List_iterator<int,int &,int *> & - _List_iterator<int,int &,int *> &'

STL Containers
• STL provides a bunch of container

types: objects that contain other objects

• For example: the STL vector class behaves
much like an array, but it handles all the
memory management for you, and can
grow itself as necessary

• vector is (duh) a template class, so you
get to tell the compiler what type the
vector holds:

vector<int> bunchOfInts;

• Here’s a simple example of the vector class in action:

#include <vector>
using namespace std;

vector<int> vec; // or std::vector
int a = 2;
int b = -5;

vec.push_back(a);
vec.push_back(9);
vec.push_back(b);

for(int i = 0; i < vec.size(); i++)
{
 cout << vec[i] << endl;
}

STL With Custom Classes

• STL containers work fine with built-in types,
but to use them with custom classes, the
class need to have these things defined:

• default constructor

• copy constructor

• assignment operator

• operator< (sometimes)

• operator== (sometimes)

find() in STL Containers
• Most STL containers support the find() function,

which lets you search for a value

• But what should find() return?

• A position/index would be OK for a vector, but
wouldn’t work so well for something like a set, which
has no inherent order!

• Instead, STL uses iterators - small C++ objects
that work like intelligent pointers

• So find() returns an iterator that points to the found
value

vector<int> vec;
vector<int>::iterator iter;

... // put stuff in the vector

for(iter = vec.begin(); iter != vec.end(); iter++)
{
 cout << *iter << endl;
}

Iterators
• Example: vector (again)

• We’re using an iterator like we would a pointer!

• This is the “standard” way to traverse through an STL
container

the iterator type for
each STL class is

declared in the class!

Using the find() function
• The find() function doesn’t deal with a

container (like a vector or a list) - it
deals entirely with iterators

vector<int> vec;
vector<int>::iterator iter;

iter = find(vec.begin(), vec.end(), 42);

starting iterator of the
range we’re searching in

ending iterator of the
range we’re searching in

value we’re searching
for - what type is this?

(In general, that is)

A new thing...

• We often find ourselves doing stuff like this:

• ... where we just want to execute a single
statement based on the outcome of some
condition (here, setting a value).

int bob;

if(someConditionIsTrue)
 bob = 17;

else
bob = 96;

A Shortcut:

• C++ provides us a nifty shortcut to do this sort
of thing:

• The ternary operator!

• (what does ternary mean?)

An Example

int bob;

if(someCondition)
 bob = 17;

else
bob = 96;

int bob = someCondition ? 17 : 96;

This unwieldy piece of code:

can be reduced to this:

Anatomy of the Ternary
Operator

condition ? truePart : falsePart

this would go in
the if statement the single statement that gets

executed if condition is
true

the single statement that gets
executed if condition is false

Usages

• What is this good for?

• Shortening code

• Assigning const values conditionally

int max(int a, int b)
{
 return a > b ? a : b;
}

bool correct = getValue();
const int PI = correct ? 3.14 : 92.8;

Question
• Hopefully you

should know the
answer to this by
now...

• Why might the
ternary operator
not always be a
good idea?

Bad Code!

• On the other end of the
conditional execution
scale:

• When you are testing a
single value against a lot
of conditions, you get a
lot of hard-to-read code

• Like this!

int input = getInput();

if(input == 0)
doStuff();

else if(input == 1)
doSomethingElse();

else if(input == 2)
doAThirdThing();

else if(input == 3)
playSpades();

else if(input == 4)
watchScrubs();

else if(input == 5)
goBirdWatching();

else if(input == 6)
eatHamburger();

the switch statement

• The switch statement
is often a more
elegant, sometimes
faster way to do this

• switch tests a single
integer variable
against a large
number of conditions

• Here we’re checking
input against 0 - 6

int input = getInput();

switch(input)
{

case 0: doStuff();
 break;
case 1: doSomethingElse();
 break;
case 2: doAThirdThing();
 break;
case 3: playSpades();
 break;
case 4: watchScrubs();
 break;
case 5: goBirdWatching();
 break;
case 6: eatHamburger();
 break;

}

int input = getInput();

switch(input)
{

case 0: doStuff();
 break;
case 1: doSomethingElse();
 break;
case 2: doAThirdThing();
 break;
case 3: playSpades();
 break;
case 4: watchScrubs();
 break;
case 5: goBirdWatching();
 break;
case 6: eatHamburger();
 break;

}

entire switch
statement enclosed

in curly braces

this can be any integer
expression - in

parenthesis, just like an
if statement

switch keyword

case statement:
must be unique!

Case
Statements

char grade = getGrade();

switch(grade)
{

case ‘A’: callMom();
 cout << “yay!”;
 postOnFridge();
 break;

case ‘D’: sigh();

case ‘F’: grumble();
 cout << “boo.”;
 studyHarder();
 break;

}

• When the input value is
equal to a case value,
everything until the next
break is executed

• Even code in other case
statements!

• this is called falling through

• Any code that can go in
a function can go in a
case statement

Default
Statements

• Code in the default
statement is executed
if none of the case
statements are true

• There can be only one
of these per switch
statement

char grade = getGrade();

switch(grade)
{

case ‘A’: callMom();
 cout << “yay!”;
 postOnFridge();
 break;

case ‘D’: sigh();

case ‘F’: grumble();
 cout << “boo.”;
 studyHarder();
 break;

default: cout << “meh.”;
 eatHamburger();
 break;

}

A Random Note About C++
Conditionals

bool one()
{
 cout << “one()” << endl;
 return false;
}

bool two()
{
 cout << “two()” << endl;
 return false;
}

int main()
{
 if(one() && two())
 cout << “true” << endl;
 return 0;
}

What is the output
of this program?

Minimal Evaluation

• C++ uses a strategy called minimal evaluation or
short circuit evaluation to avoid doing unnecessary
work

• This comes into play with the && operator, which is
evaluated left-to-right:

if(one() && two())
 cout << “true” << endl;

(returns false)

Minimal Evaluation

• Keep minimal evaluation in mind
when writing conditional expressions

• This can actually be really handy!

• Here, we won’t access ptr->value unless ptr
is non-null

if(ptr && ptr->value == 42)
{

// do stuff
}

