THU:S WHO
THROW OBJECTS
AT THE CROCODILES
WILL BE ASKED TO

RETRIEVE THEM

NMULTIPLE

=S INHERITANCE
|OSTREAMS

class base
{
public:
base(int p);
void funcOne();
int a;
protected:
int b;
void funcTwo();
private:
void funcThree();
int c;

class derived

{

: public base

public:
derived();
void testFunc();

}i

void derived::testFunc|()

{

a++;
b++;
c++;

® |et’s look at some of this...

® VWhat would the
constructor look like?

derived bob(42);
derived ted;

ted. funcOne();
ted. funcTwo () ;
ted.funcThree();

Review

class base

{
public:
void print();

}i

class derived

{
public:
void print();

void test()

{
print();

}

\'A%
\'A%

nat is polymorphism!

hat are virtual functions and

what problem do they solve!

What does it mean to
override a function?

Why do destructors
(sometimes) need to be virtual?

How do we call the base class
version of print() in
derived::test()?

What’s an abstract/pure virtual
function and what is it good
for?

An lssue

FarmAnimal
int weight;

MooCow
void chewCud();
bool hungry;

let’s talk about this...

How is cow being passed?

What type is cow!?

Whawpe does

printVWeight accept!?

r
ol
. Yo
We can transparently treat
MooCow as a FarmAnimal (this
is what polymorphism means!)

So we can pass MooCow into a
function that accepts FarmAnimal.

void printWeight(FarmAnimal animal)

{

cout << animal.weight;

}

int main()

{
MooCow cow;
printWeight(cow);

Object Slicing

For this to work, a MooCow must be converted to
a FarmAnimal

The compiler takes all the FarmAnimal bits and
leaves behind all the MooCow bits!

This is called
void printWeight(FarmAnimal animal)

object slicing ¢

cout << animal.weight;
It’s generally bad. }

int main()

To prevent it, use {

. MooCow cow;
pomters or printWeight(cow);
references instead!

Multiple Inheritance

® Sometimes inheriting from
a single class isn’t enough!

Person ® Say we've got the simple

string name; class hierarchy to the left:
void introduce();

® VWhat do we do when we
want to define a
Teacher j Student 'Il'ea::hmgAssmtant
class!?

void teachClass(); void attendClass(); ® A TeachingAssistant both

void introduce(); void introduce(); teaches and attends classes
string courseName; string courseName;

® No one base class is enough!

string name;

void introduce(); ® We have to make

TeachingAssistant
inherit from both Teacher

and Student!
Teacher

So: our new TA class will

void attendClass(); inherit all the stuff from

void introduce(); both base classes!
string courseName;

void teachClass();
void introduce();

string courseName;)
How would we write an

introduce method that
TeachingAssistant explains what course the
TA teaches, and what
void introduce(); course he/she studies?

String name; How many courseName

void introduce(); : :
variables are there in
TeachingAssistant?

How do we print out the
right version at the right

Teacher

time?
void attendClass();
void introduce();
string courseName; | void TA::introduce()

{

void teachClass();
void introduce();
string courseName;

cout << "I teach: ";

. . cout << (7?)
TeachingAssistant cout << “I study: “;

4
cout << (?)

void introduce();

Multiple Inheritance

class Teacher : public Person
{ // declaration mostly omitted
public:
Teacher(string name);

}i

class Student : public Person
{ // declaration mostly omitted
public:

Student(string name);

}i

class TA :
public Teacher, public Student

{
public:
TA()
Student (name), Teacher (name)
{}
}i

® Doing this is pretty
simple:

® Just add to the list of
classes your class
inherits from

® You may need to add
to the constructor init
list too!

One problem you may have
noticed:

string name; .
void introduce(); ® How many copies of name

does TeachingAssistant have!

Which one do we use?! Does
Teacher it matter?

: void attendClass(); i . s
void teachClass(); Coid introduce()°() IOld TA::introduce()

void introduce(); ri N
: string courseName; “ e
string courseName; & ’ cout << “My name 1s:";

cout << (?)
cout << “I teach: ";
cout << (?)
cout << “I study: “;
cout << (?)

TeachingAssistant

void introduce();

TeachingAssistant is
derived from both
Student and Teacher

Both Student and
Teacher inherited a
name attribute from
Person

Therefore,
TeachingAssistant has
two copies of name!

This might be OK but it
might not: could each
copy of name have a
different value!

Virtual
Inheritance

® The way to solve this: virtual
inheritance

® |f you inherit “virtually” from a

base class, you tell the compiler:

® there must be one instance of
that base class if someone
inherits from the current class

® This is weird, and ugly, but it
solves the problem neatly

how this works:

® Before we had two

string name; copies of name in
void introduce(); TeachingAssistant

Now, Teacher and Student
are inheriting virtually from

Teacher
Person (red arrows)

void attendClass(); So there will be only one
void introduce(); copy of Person in any class

void teachClass();
void introduce();

. . string courseName;
string courseName;

inherited from Teacher and
Student

TeachingAssistant ... aka TeachingAssistant,
only has a single copy of
void introduce(); Person - (therefore, name)

// declarations mostly omitted...
class Person
{
public:
string name;

}i

class Teacher : virtual public Person
{
public:
Teacher(string name);

}i

class Student : virtual public Person
{
public:

Student(string name);

}i

class TA :
public Teacher, public Student
{
public:
TA(string name) :
Student (name), Teacher (name)
{}
}i

Vir;ual
Inheritance

® To inherit virtually, just
stick the keyword
virtual right before
the public

This has nothing to do
with virtual functions!

Why do both Student
and Teacher use virtual
inheritance! Is this
necessary!

Multiple Inheritance

® Many people disagree on the
usefulness of Multiple Inheritance

® Many newer languages don’t support Ml
at all, or only a small subset of it

® |f you find yourself needing to use Ml
a lot, consider redesigning your
classes so you don't!

® Not used nearly as widely as regular
inheritance

One Method...

® One reasonable way to use Multiple
Inheritance:

® Make all or most of the base classes be
interface classes

nat does this mean?

nat problem does it solve!?

The Basics

® |/O is a big part of nearly every program

® We've been doing simple I/O for most of the
semester, using €in and cout

® cin and cout are just two examples of a
more general C++ feature called
ilostreams

Streams

%ﬁ_\\
® A stream is a C++ object that formatsﬁ

holds bytes of data

® There can be input streams (an istream)

or an output stream (an ostream)

® Cin is an istream, cout is an ostream; these
give you access to stdin and stdout

® Streams don’t only do |/O: they also buffer
the data to make /O more efficient

lostream properties

® Streams are designed to be source independent:
a stream should be used the same way
regardless of where the data is coming or going

® The same interface can work on:

keyboard/screen I/O (cout/cin)

file I/O
network I/O
a string

® Thanks to the magic of...?

® We've been doing stuff like this all semester:

int input;

cin >> 1input;
cout << “this 1s some output” << endl;

® |et’s look at what this stuff actually is:
® >> s an extraction operator
® << is an insertion operator
® endl is a manipulator

® cout is an ostream; c€in is an istream

Manipulators

® A manipulator is an object that acts on the
stream itself

® endl is an example: when we try and
“print” an endl:

® it inserts a newline into the stream
® it flushes the stream

® There’s a bunch of other manipulators that
we can use too

More Manipulators

® We can just flush the stream, without printing a
newline first:

cout << flush;

® We can change the number base to oct (octal) or
dec (decimal) or hex (hexadecimal) to any
subsequent integers will be output in that base:

cout << hex << “0x" << 1 << endl;

int 1i;
cin >> 1i;

float £;
cin >> f;

char c;
cin >> c;

char buf[100];
cin >> buf;

What does this code
do with this input?

Input

Input tends to be fragile

Users have to input the right
data types, in the right order

If the input isn’t what the
program expects, it can
choke

This is true with iostreams
too:

12 1.4 ¢ this is a test

The Problem

By default, istreams are space delimited (as
you may have seen in some of the projects)

So when we attempt to do something like
this:

char buf[100];
cin >> buf;

with the input “this is a test”, buf will contain
the word “this”

The rest of the input stays buffered

reading in a whole line

® Often you'll need to read in entire lines
(until there’s a newline character in the
input stream)

® You do this using the getline member
function:

char buf[100];
cin.getline(buf, 100);

Note that we
have to give cin a
size, too! (why?)

Getting a character

Another way to do things:

Sometimes you want to get input character
by character (including the whitespace!)

You can do that with another cin member
function:

get() reads the next single character from the
stream (or EOF if the stream is at its end)

Streams VVeirdness

® |nput streaming doesn’t always work the way
you think it does

® How does this chunk of code act?

char answer;

cout << "Exit Program? [Y/N] ";
cin >> answer;

cout << "Press Enter\n";
cin.get();

Discarding Input

® One solution: get rid of stuff in the stream
buffer that we aren’t going to want to deal
with

® We can do this with the ignore() function:

cin.ignore(); // ignores a single character
cin.ignore(3); // ignores 3 characters

// ignores 10 characters, or the “stop character”
// whichever comes first
cin.ignore (10, ‘\n’);

File I/O

So far we’ve used iostreams solely for
console input/output

A more important use is for file I/O

This works largely the same way, although
there’s a bit more work required

For file /O, we must #include<fstream?>

Starting Out

® To begin with, we create an object of the
appropriate type: ifstream defaults to
input, ofstream defaults to output

® We create the object and call good() on it to
make sure it got instantiated properly:

ofstream output(“c:\\test.txt”);
if(!output.good())
return;

® At this point the object can be used much like
cout or cin

Open Modes

® We can control the way a file is
opened by changing an argument to
the ifstream/ofstream constructor:

a fi

e for input

a fi

e for output (truncation)

a fi

e for appending

an existing file and seek to the end

.:nocreate

a fi

e only if it does exist

::noreplace

a fi

e only if it does not exist

.:trunc

a fi

e and delete the old one if it exists

::binary

O |O|O|O|O|O|O |O

a fi

e in binary mode (default is text)

Multiple Modes

® We can combine these flags by OR-ing them
together with the bitwise OR operator: |

ofstream outFile(“out.txt”, ios::app | ios::nocreate);

® This opens “out.txt” for appending, and fails if
the file doesn’t already exist

® The | operator combines the different flags
together - this is pretty common

..oeeking

® Each ofstream or ifstream has a read
position and a write position - we seek
through the file by changing these, so the
object reads from/writes to a different spot

® We do this with the seekg (changes the get
pointer) and seekp (changes the put
pointer) member functions

® They let us seek relative to a position: the
beginning, current position, or the end

Seeking Example

® We tell the seek function to seek x number of
bytes relative to the beginning (ios::beg), current
position(ios::cur), or end (ios::end) of the file

ifstream in(“test.txt”);
char c;

if(!in.good())
return;

// seek 50 bytes from the beginning of the file
in.seekg(50, ios::beg);
in >> c;

Error Handling

® We can find out whether an iostream object is OK
using a few member functions:

® eof() returns true if the end of the file (or input)
has been reached

® fail() returns true if some operation has failed -
formatting issues, for example

® bad() returns true if something serious went
wrong - running out of memory, for example

® good() returns true if none of that stuff
happened and everything is groovy

Error Handling 2

® Jo ‘“reset’ the error status of an iostream
object, you can use the clear() function

® We might do this if we want to keep using
the object - aka “rewind” a file and read
some more from it

® clear() only resets the error status - it
doesn’t do anything with the buffer

Insertion/Extraction

® jostreams are a library, not built into the language

® So << and >> don’t have any special /O meaning
to the compiler - these are all overloaded!

® So for every data type that can appear on the
right side of a >>, there’s an overloaded
operator>> function somewhere

int input; This works because istream
cin >> input; €=t""" defines an operator>> that
accepts an integer as a
parameter

Insertion/Extraction

® So far we haven’t learned any way to make
the following code work

® The << operator is not defined for MyClass
and ostreams, so this is a compiler error

class MyClass

{
// stuff is declared here

}i

MyClass m;
cout << m << endl;

® We can make it work providing that definition

Operator Overloading

® When we're overloading << and >> for our
classes, these overloaded operators can’t be
defined as member functions!

They still need access to private class data,
though, so they’re usually defined as global
functions, and declared as friends

Once we've overloaded << and >> for a
custom class, we can use that class with
iostreams such as cin/cout

class TwoInts

{
public:
TwoInts ()
{ one = two = 17; }

friend ostream& operator<<(ostreamé&, TwoInts&);
friend istream& operator>>(istreamé&, TwolInts&);

private:
int one, two;

ostream& operator<<(ostream& out, TwoInts& ti)

out << ti.one << ti.two;
return out;

istream& operator>>(istream& in, TwolInts& ti)

{

in >> ti.one;
in >> ti.two;
return in;

Example...

® Reading in a list of information from a file
using iostreams

Project 4

The goal of Project 4 is to create a simple Account
Manager using file I/O and polymorphism

Create different classes representing several
different types of accounts: credit card, savings
account, checking account, all derived from a
common base

The program should save the balance of each
account in a file upon exiting and reload it upon
startup

The program should be written using polymorphism
wherever possible

