
Multiple
inheritance

&
Iostreams



class base
{
   public:
      base( int p );
      void funcOne();
      int a;
   protected:
      int b;
      void funcTwo();
   private:
      void funcThree(); 
      int c;
};

class derived : public base
{
   public:
      derived();
      void testFunc();
};

void derived::testFunc()
{
   a++;
   b++;
   c++;
}

derived bob( 42 );
derived ted;

ted.funcOne();
ted.funcTwo();
ted.funcThree();

• Let’s look at some of this...

• What would the 
constructor look like?



Review
• What is polymorphism?

• What are virtual functions and 
what problem do they solve?

• What does it mean to 
override a function?

• Why do destructors 
(sometimes) need to be virtual?

• How do we call the base class 
version of print() in 
derived::test()?

• What’s an abstract/pure virtual 
function and what is it good 
for?

class base
{
   public:
      void print();
};

class derived
{
   public:
      void print();

      void test()
      {
          print();
      }
};



An Issue

• We can transparently treat 
MooCow as a FarmAnimal  (this 
is what polymorphism means!)

• So we can pass MooCow into a 
function that accepts FarmAnimal.

FarmAnimal
int weight;

MooCow
void chewCud();
bool hungry;

void printWeight( FarmAnimal animal )
{
    cout << animal.weight;
}

int main()
{
    MooCow cow;
    printWeight( cow );
}

let’s talk about this...
• How is cow being passed?

• What type is cow?

• What type does 
printWeight accept?



Object Slicing
• For this to work, a MooCow must be converted to 

a FarmAnimal

• The compiler takes all the FarmAnimal bits and 
leaves behind all the MooCow bits!

void printWeight( FarmAnimal animal )
{
    cout << animal.weight;
}

int main()
{
    MooCow cow;
    printWeight( cow );
}

• This is called 
object slicing

• It’s generally bad.

• To prevent it, use 
pointers or 
references instead!



Multiple Inheritance
• Sometimes inheriting from 

a single class isn’t enough!

• Say we’ve got the simple 
class hierarchy to the left:

• What do we do when we 
want to define a 
TeachingAssistant 
class?

• A TeachingAssistant both 
teaches and attends classes

• No one base class is enough!

Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;



• We have to make 
TeachingAssistant 
inherit from both Teacher 
and Student!

• So:  our new TA class will 
inherit all the stuff from 
both base classes!

• How would we write an 
introduce method that 
explains what course the 
TA teaches,  and what 
course he/she studies?

Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

TeachingAssistant

void introduce();



• How many courseName 
variables are there in 
TeachingAssistant?

• How do we print out the 
right version at the right 
time?

Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

TeachingAssistant

void introduce();

void TA::introduce()
{
   cout << “I teach: ”;
   cout <<  (?)
   cout << “I study: “;
   cout <<  (?)
}



Multiple Inheritance

• Doing this is pretty 
simple:

• Just add to the list of 
classes your class 
inherits from

• You may need to add 
to the constructor init 
list too!

class Teacher : public Person
{   // declaration mostly omitted
  public:
    Teacher( string name );
};

class Student : public Person
{   // declaration mostly omitted
 public:
    Student( string name );
};

class TA : 

      public Teacher, public Student

{
  public:
    TA() :
      Student(name), Teacher(name)
    {}
};



• One problem you may have 
noticed:

• How many copies of name 
does TeachingAssistant have?

• Which one do we use? Does 
it matter?Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

TeachingAssistant

void introduce();

void TA::introduce()
{
   cout << “My name is:”;
   cout <<  (?)
   cout << “I teach: ”;
   cout <<  (?)
   cout << “I study: “;
   cout <<  (?)
}



• TeachingAssistant is 
derived from both 
Student and Teacher

• Both Student and 
Teacher inherited a 
name attribute from 
Person

• Therefore, 
TeachingAssistant has 
two copies of name!

• This might be OK but it 
might not: could each 
copy of name have a 
different value?



Virtual 
Inheritance

• The way to solve this: virtual 
inheritance

• If you inherit “virtually” from a 
base class, you tell the compiler:

• there must be one instance of 
that base class if someone 
inherits from the current class

• This is weird, and ugly, but it 
solves the problem neatly



• Before we had two  
copies of name in 
TeachingAssistant

• Now, Teacher and Student 
are inheriting virtually from 
Person (red arrows)

• So there will be only one 
copy of Person in any class 
inherited from Teacher and 
Student

• ... aka TeachingAssistant, 
only has a single copy of 
Person - (therefore, name)

Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

TeachingAssistant

void introduce();

how this works:



Virtual 
Inheritance

• To inherit virtually, just 
stick the keyword 
virtual right before 
the public

• This has nothing to do 
with virtual functions!

• Why do both Student 
and Teacher use virtual 
inheritance? Is this 
necessary?

// declarations mostly omitted...
class Person
{
  public:
    string name;
};

class Teacher : virtual public Person
{
  public:
    Teacher( string name );
};

class Student : virtual public Person
{
 public:
    Student( string name );
};

class TA : 
      public Teacher, public Student
{
  public:
    TA(string name) :
      Student(name), Teacher(name)
    {}
};



Multiple Inheritance

• Many people disagree on the 
usefulness of Multiple Inheritance

• Many newer languages don’t support MI 
at all, or only a small subset of it

• If you find yourself needing to use MI 
a lot, consider redesigning your 
classes so you don’t!

• Not used nearly as widely as regular 
inheritance



One Method...

• One reasonable way to use Multiple 
Inheritance:

• Make all or most of the base classes be 
interface classes

• What does this mean?

• What problem does it solve?



The Basics

• I/O is a big part of nearly every program

• We’ve been doing simple I/O for most of the 
semester, using cin and cout

• cin and cout are just two examples of a 
more general C++ feature called 
iostreams



Streams

• A stream is a C++ object that formats and 
holds bytes of data

• There can be input streams (an istream) 
or an output stream (an ostream)

• cin is an istream, cout is an ostream; these 
give you access to stdin and stdout

• Streams don’t only do I/O:  they also buffer 
the data to make I/O more efficient



iostream properties
• Streams are designed to be source independent:  

a stream should be used the same way 
regardless of where the data is coming or going

• The same interface can work on:

• keyboard/screen I/O  (cout/cin)
• file I/O
• network I/O
• a string

• Thanks to the magic of... ?



• We’ve been doing stuff like this all semester:

int input;

cin >> input;
cout << “this is some output” << endl;

• Let’s look at what this stuff actually is:

• >> is an extraction operator

• << is an insertion operator

• endl is a manipulator

• cout is an ostream;  cin is an istream



Manipulators
• A manipulator is an object that acts on the 

stream itself

• endl is an example:  when we try and 
“print” an endl:

• it inserts a newline into the stream

• it flushes the stream

• There’s a bunch of other manipulators that 
we can use too



More Manipulators

• We can just flush the stream, without printing a 
newline first:

• We can change the number base to oct (octal) or 
dec (decimal) or hex (hexadecimal) to any 
subsequent integers will be output in that base:

cout << flush;

cout << hex << “0x” << i << endl;



Input
• Input tends to be fragile

• Users have to input the right 
data types, in the right order

• If the input isn’t what the 
program expects, it can 
choke

• This is true with iostreams 
too:

int i;
cin >> i;

float f;
cin >> f;

char c;
cin >> c;

char buf[100];
cin >> buf;

12 1.4 c this is a test
What does this code 
do with this input?



The Problem
• By default, istreams are space delimited  (as 

you may have seen in some of the projects)

• So when we attempt to do something like 
this:

char buf[100];
cin >> buf;

• with the input “this is a test”, buf will contain 
the word “this”

• The rest of the input stays buffered



reading in a whole line

• Often you’ll need to read in entire lines 
(until there’s a newline character in the 
input stream)

• You do this using the getline member 
function:

char buf[100];
cin.getline(buf, 100);

Note that we 
have to give cin a 
size, too!  (why?)



Getting a character
• Another way to do things:

• Sometimes you want to get input character 
by character  (including the whitespace!)

• You can do that with another cin member 
function:

cin.get();

• get() reads the next single character from the 
stream (or EOF if the stream is at its end)



Streams Weirdness

• Input streaming doesn’t always work the way 
you think it does

• How does this chunk of code act?

char answer;
cout << "Exit Program? [Y/N] ";
cin  >> answer;
cout << "Press Enter\n";      
cin.get();



Discarding Input

• One solution: get rid of stuff in the stream 
buffer that we aren’t going to want to deal 
with

• We can do this with the ignore() function:

cin.ignore();    // ignores a single character
cin.ignore(3);   // ignores 3 characters

// ignores 10 characters, or the “stop character”,
// whichever comes first
cin.ignore(10, ‘\n’);  



File I/O

• So far we’ve used iostreams solely for 
console input/output

• A more important use is for file I/O

• This works largely the same way, although 
there’s a bit more work required

• For file I/O, we must #include<fstream>



Starting Out
• To begin with, we create an object of the 

appropriate type:   ifstream defaults to 
input, ofstream defaults to output

• We create the object and call good() on it to 
make sure it got instantiated properly:

ofstream output(“c:\\test.txt”);
if( !output.good() )
    return;

• At this point the object can be used much like 
cout or cin



Open Modes
• We can control the way a file is 

opened by changing an argument to 
the ifstream/ofstream constructor:

ios::in open a file for input

ios::out open a file for output  (truncation)

ios::app open a file for appending

ios::ate open an existing file and seek to the end

ios::nocreate open a file only if it does exist

ios::noreplace open a file only if it does not exist

ios::trunc open a file and delete the old one if it exists

ios::binary open a file in binary mode (default is text)



Multiple Modes

• We can combine these flags by OR-ing them 
together with the bitwise OR operator:  |

ofstream outFile(“out.txt”, ios::app | ios::nocreate );

• This opens “out.txt” for appending, and fails if 
the file doesn’t already exist

• The | operator combines the different flags 
together - this is pretty common



...Seeking
• Each ofstream or ifstream has a read 

position and a write position - we seek 
through the file by changing these, so the 
object reads from/writes to a different spot

• We do this with the seekg (changes the get 
pointer) and seekp (changes the put 
pointer) member functions

• They let us seek relative to a position: the 
beginning, current position, or the end



Seeking Example
• We tell the seek function to seek x number of 

bytes relative to the beginning (ios::beg), current 
position(ios::cur), or end (ios::end) of the file

ifstream in(“test.txt”);
char c;

if( !in.good() )
    return;

// seek 50 bytes from the beginning of the file
in.seekg( 50, ios::beg );
in >> c;



Error Handling
• We can find out whether an iostream object is OK 

using a few member functions:

• eof() returns true if the end of the file (or input) 
has been reached

• fail() returns true if some operation has failed - 
formatting issues, for example

• bad() returns true if something serious went 
wrong - running out of memory, for example

• good() returns true if none of that stuff 
happened and everything is groovy



Error Handling 2

• To “reset” the error status of an iostream 
object, you can use the clear() function

• We might do this if we want to keep using 
the object - aka “rewind” a file and read 
some more from it

• clear() only resets the error status - it 
doesn’t do anything with the buffer



Insertion/Extraction
• iostreams are a library, not built into the language

• So << and >> don’t have any special I/O meaning 
to the compiler - these are all overloaded!

• So for every data type that can appear on the 
right side of a >>, there’s an overloaded 
operator>> function somewhere

int input;
cin >> input;

This works because istream 
defines an operator>> that 
accepts an integer as a 
parameter



Insertion/Extraction
• So far we haven’t learned any way to make 

the following code work

• The << operator is not defined for MyClass 
and ostreams, so this is a compiler error

class MyClass
{
   // stuff is declared here
};

MyClass m;
cout << m << endl;

• We can make it work providing that definition



Operator Overloading

• When we’re overloading << and >> for our 
classes, these overloaded operators can’t be 
defined as member functions!

• They still need access to private class data, 
though, so they’re usually defined as global 
functions, and declared as friends

• Once we’ve overloaded << and >> for a 
custom class, we can use that class with 
iostreams such as cin/cout



class TwoInts
{
  public:
    TwoInts()
    { one = two = 17; }

    friend ostream& operator<<( ostream&, TwoInts& );
    friend istream& operator>>( istream&, TwoInts& );

  private:
    int one, two;
};

ostream& operator<<( ostream& out, TwoInts& ti )
{
   out << ti.one << ti.two;
   return out;
}

istream& operator>>( istream& in, TwoInts& ti )
{
   in >> ti.one;
   in >> ti.two;
   return in;
}



Example...

• Reading in a list of information from a file 
using iostreams



Project 4
• The goal of Project 4 is to create a simple Account 

Manager using file I/O and polymorphism

• Create different classes representing several 
different types of accounts: credit card, savings 
account, checking account, all derived from a 
common base

• The program should save the balance of each 
account in a file upon exiting and reload it upon 
startup

• The program should be written using polymorphism 
wherever possible


