174 KM_AHEAD

| Ly
'-.l-.:l !‘-

| 9

Logistics

® |Introductions

® Go over syllabus

® About programming and languages

® A little history
® About C++ as a language
® How to write and compile a simp

® How to write programs in genera

e program

What is Programming!?

® Computers are dumb - making them do useful
things involves telling them exactly what to do, step
by step.

® Programming is the process of taking a program and

brea
com

King it down into a sequence of steps the
buter can handle (CPU instructions).

® CPU

instructions are very simple: e.g. add two

numbers, fetch a number from memory, see if a
number is equal to zero, etc.

Low Level Language

® Usually t

nis refers to assembly code

® Each cod

e instruction becomes a single CPU

instruction

® Hard to write, hard to read, hard to maintain

® Not portable between different CPU families

® ... but great for control freaks, and can result in very
efficient code

Righ Level Languages

Most programming languages are high-level (C++, C,
Perl, PHP, Java, Pascal, Python...)

Easy to write, easy to read (easier, anyway)
Not (usually) machine specific
Must be translated into assembly language

... meaning it often loses something in efficiency

A Bit ‘o History

Before C++ came C,in the early 1970s

C was originally invented (no kidding) to play Space
Travel, a video game

Developed along with UNIX

C was designed to be minimalist:

® FEasy to compile into fast machine code
® Nothing “behind the scenes”

® | ow level access to memory

...and then came C++

® C++ is an extension to C, from the early
1 980s

C++ is “C with classes”, and a few extra
language features

... but still with most of the low-level-ness of
C (no hand-holding)

Fast, powerful, standardized, and very
popular

... but error prone if you are not careful!

C++ js:

Compiled (translated into machine code in
advance, before run-time)

Strongly typed, meaning that each variable has a
type associated with it (float, int, whatever)

High level... but still pretty low

Portable - the same code can often be compiled on
many different kinds of computers with little or no
modification

Writing a C++ program

Programs can be written in any text editor

On the lab machines try gedit, nedit, emacs,
KDevelop, etc.

Via SSH (linux.cs.uiowa.edu) try pico

Use whatever text editor or platform or compiler
you are most comfortable with, but your program
must compile on Linux using g++!

// a sample program, by
#include <iostream>
using namespace std;

int main()

{
int baz = 2;
int foo = 21;
int result;

// multiply some stuff
result = foo * baz;

// output the result
cout << “Hello world: ”
<< result << endl;

return O0;

Compiling/Running it

® |.Compile with g++

® 2. If it works, run the resulting executable

® 3. Like this:

[gbnichol@servl16 ~/cppl$ 1s

main.cpp

[gbnichol@servl16 ~/cpp]$ g++ -0 program main.cpp
[gbnichol@servl16 ~/cpp]$ 1ls

main.cpp program

[gbnichol@servl16 ~/cpp]$./program

Hello world: 42

[gbnichol@servl16 ~/cpp]

Errors!

® Errors are problems with your program
e Different kinds of errors:

® Compiler errors

® Linker errors

® Runtime errors

Compiler Errors

Compiler errors are problems with your
code that result in it not compiling

Code errors, typos, spelling errors, etc.

Errors must be fixed before the code will
compile; warnings don’t have to be fixed
(but you should probably fix them anyway,
if you can)

Linker Errors

Each cpp file is compiled into an object file, which
contains the compiled version of that code

All the object files are “linked” together into a
single executable program

If the object files don’t mesh together well
(missing functions, duplicate functions, etc.) you
get linker errors

These must be fixed before you can run your
program

Runtime Errors

® You know... bugs!

® Anytime your program crashes or in general
doesn’t work correctly

® Divide by zero, running out of memory, or just
doing the wrong thing

Errors

® Finding and fixing errors can be tricky and
sometimes frustrating - some errors can be hard
to find (= vs == for example)

® Solution: practice and be patient.

® The only way to get good at this is to do lots of
it!

Thoughts on Programming

® Programming is the process of taking a program and
breaking it down into a sequence of steps you can
put into code.

® This is not always easy.
® Doing it well requires patience and practice.

® |t can be fun, though. Really. :-)

Programming (in general)

® Divide the project up into smal

® Write each chunk independent

C

Y.

document anything that needs it.

nunks.

Use comments to

® Jest that chunk. Make sure it works.

® Then move onto other chunks.

® Compile early and often, and fix any errors and

warnings before moving on.

Variables and Memory

® Each variable;
has a name (identifier)

nas a type (bound at compile-time)

nas its own location in memory (address)
takes up a certain number of bytes

...ahd of course has a value

Variable Names

® Rules for variable names in C++:
® Can contain letters, numbers, or underscores
® Must begin with a letter or an underscore

® Usually a length limit (compiler dependent) but
long enough to not matter

® Can’t be a reserved word

® (C++ is case sensitive

® varName !=VARNAME !=VarName != varname

Which variable names are valid?

int 8pmDinner;

char test-case;

int this is a really long variable name;
float isThisValid;

double wake up;

char Sbob;

double return;

gregWasHere;

C++ Reserved Words

asm
auto

bool

break
case
catch

char

class
const
const_cast
continue
default
delete

do

double

dynamic_cast
else
enum
explicit
export
extern
false
float

for

friend
goto

if

inline

int

long
mutable
namespace
new
operator
private
protected

public unsigned
reqgister using
reinterpret_cast virtual
return void
short volatile
signed wchar_t
sizeof while
static

static_cast

struct

switch

template

this

throw

true

try

typedef

typeid

typename

union

Basic Data lypes

The types you might care about:

® int-124,3,-100
o float - [2.4,45.68,-34.22
e char -'2,'b,'$’,'%’,128, 7,254

® bool - true, false

Except for bool, any of these can be signed or unsigned.

Variable Types (32-bit)

char

character, small integer

| bytes

signed: -128 to 127
unsigned: 0 to 255

short

short integer

2 bytes

signed: -32768 to 32767
unsigned: 0 to 65535

int / long

integer

4 bytes

signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295

bool

boolean value

4 bytes

true or false

float

floating point value

4 bytes

3.4e +/- 38 (7 digits)

double

double precision floating
point value

8 bytes

1.7e +/- 308 (15 digits)

wchar t

wide character

2 bytes

1 wide character

Declaring Variables

® All variables must be declared semicolon

before they can be used. every statement
ends with one

® Declarations allocate memory for

that variable.
int result =

an

type (implies size) name (identifier) initial value
required required optional

Declaring Variables

Variables can be declared one per line:

int type;

int score = 3;

int aliensKilled;
bool awesome = true;

Or, variables of the same type can be declared
on the same line:

int type, score = 3, aliensKilled;
bool awesome = true;

Variable Initialization

® Variable initializations are optional...

® What happens if a variable is not initialized with a
value!?

int result = initial value is 25

int result; initial value is what?

Variable Initialization

Answer: initial value ends being whatever was in
that chunk of memory beforehand

Probably a garbage value

C++ compilers do not pre-initialize variables!

Rule of thumb: always initialize variables

int result = -19358221;

Assigning stuff to variables

® Using the = operator (akai = 25.3;)
® We can assign numeric literals:

® int types: 3,0,-42, 167, not 1,345,293

® float types: 2.0,-0.33365f, 3.0e5

® bool: true or false

® .. or an expression of some sort

Arithmetic Operators

® Assignment (=),asina = 4;

Addition (+)

Subtraction (-)
Multiplication (*)
Division (/)

® Modulo (%)

® this only works for integers

® 5%3=12

a quick note about...

Integer Division

® The result of an integer divide is an integer -
the remainder is discarded

e 5/3=1
® what about 3/ 5?

® Division by zero causes a runtime error

More Operators!!!!

As a shortcut for this:
aliensKilled = aliensKilled + 10;

You can do this:
aliensKilled += 10;

Operators of this style:
+=

*
/
s

Stuff like this happens a lot:
numberOfLives = numberOfLives + 1;

You can do this instead:
numberOfLives++; (post-increment)
or
++numberOfLives; (pre-increment)

In the above case, the two are equivalent - but
they’re not always.

Any idea what the difference is!?

Pre-Increment vs vv(

Post Increment TR

s

® Pre-increment:

® first increments the value, then returns it
® Post-increment:

® first returns the value, then increments it

® this involves making a copy of the original
value, which is in theory less efficient

® doesn’t matter all that much for built-in types

Pre-increment vs Post-increment

post-increment: pre-increment:

#include <iostream> #include <jiostream>
usling namespace std; using namespace std;

int main() int main()

{ {
int a = 10; int a = 10;
cout << a++ << endl; cout << ++a << endl;
return EXIT SUCCESS; return EXIT SUCCESS;

There are similar operators for decrementing:
aka var-- and —--var

Examples

int john = 5, chris 5, bob = 5;
float perry = 2.5;

john++ * 3;

++chris * 3;

// doesn’t change the
// value of bob

Conditional Execution

Most programs don’t unconditionally
compute things straight through

Often we need to decide whether to
execute a chunk of code, based on some
condition

Enter conditional statements!

Example

This code chunk
reads in two
numbers, and
prints out the

bigger one.

Note that
{ and } are used
to group blocks
of statements.

a code snippet...

int numl, num2;

// get two numbers from the user
cin >> numl;
cin >> num2;

// compare the numbers

if(numl > num2)

{
// this gets executed if the above
// condition is true
cout << numl;

}

else

{
// and this gets executed if not

cout << num2;

}

Comparison Operators (

® Equality: == if(a == Db)
Not Equal; != if(a !=Db)
Greater: > if(a>b)
Less: < if(a <b)
Greater or Equal: >= if(a > b)

Less or Equal: <= if(a<=b)

Boolean Logic:

combining comparisons

And operator: &&
Or operator: | |
Not operator: !

Examples:
o if((x > 0) && (x < 12))
e if((x 32 ==0) || (x < 2)
® if((x < 3) && !(x < 0))

Boolean Logic

ltrue == false
lfalse == true

(true && true) == true

(true && false) == false
(false && true) == false <«<—
(false && false) == false

both must
be true

(true || true) == true
(true || false)
(false \ true) == true <«—— either can

be true

(false || false) == false

Operator Precedence

() left to right
++X; --X left to right

X++; X--; +X; -X right to left
eft to right

eft to right

eft to right
eft to right

eft to right

eft to right

eft to right

right to left

a few quick

Examples

int foo = 5, bat
bat++ * 3 / 2 + 1
foo * 3 % 4 / 2

foo *= 2%2

® Tip:just use parenthesis to make your meaning clear

... back to 1 £ statements

® if the condition is true,an 1f statement executes the
following single statement or block of statements

® A statement is any valid expression followed by a
semicolon

® A block of statements is anything contained within a
set of { } brackets

if(!milkSmellsBad)

{ if(!milkSmellsBad)
drinkMilk(); drinkMilk();
}

else statements

® an else statement is optional; it is executed if the
matching 1£ statement is not true

® same rules apply; the statement or block immediately
following the else is what gets executed

if(jokeIsFunny)
humor += 10;

else

{

throwTomatoes () ;
humor -= 10;

fun with 1T and else

® you can pile together multiple if/else statements
to produce a chain of conditions

1f(scrubsIsOn)
watchScrubs () ;

else i1f(theOfficeIsOn)
watchTheOffice();

else i1f(1isNiceDay)
goOutside();

else
doHomework () ;

nested 1T statements

if/else statements can be nested in practically any pattern
to produce complicated conditional execution

i1f(tornadoSirenIsSounding)

{
if(!(isFirstMondayOfMonth && 1s9AM))

{
i1f(houseHasBasement)
hideInBasement();
else
runAway () ;

whimper () ;

But be ye careful!

1f(value == true)
doThis();
doThat () ;
playCheckers();

watchScrubs () ; what does this really do?

hOYV bout if(selfDestructInitiated);
this one! blowUpShip();

Sample Program

® Formula to convert Celsius to Fahrenheit:
o F=C*|.8+ 32
® Write a program that:
® Accepts Celsius temperature as input
® Converts it to Fahrenheit and displays result

® (Classifies the result as too cold, too hot, or
just right

