
Programming in C++

Logistics

• Introductions

• Go over syllabus

• About programming and languages

• A little history

• About C++ as a language

• How to write and compile a simple program

• How to write programs in general

What is Programming?

• Computers are dumb - making them do useful
things involves telling them exactly what to do, step
by step.

• Programming is the process of taking a program and
breaking it down into a sequence of steps the
computer can handle (CPU instructions).

• CPU instructions are very simple: e.g. add two
numbers, fetch a number from memory, see if a
number is equal to zero, etc.

Low Level Language

• Usually this refers to assembly code

• Each code instruction becomes a single CPU
instruction

• Hard to write, hard to read, hard to maintain

• Not portable between different CPU families

• ... but great for control freaks, and can result in very
efficient code

High Level Languages

✦ Most programming languages are high-level (C++, C,
Perl, PHP, Java, Pascal, Python...)

✦ Easy to write, easy to read (easier, anyway)

✦ Not (usually) machine specific

✦ Must be translated into assembly language

✦ ... meaning it often loses something in efficiency

A Bit ‘o History

• Before C++ came C, in the early 1970s

• C was originally invented (no kidding) to play Space
Travel, a video game

• Developed along with UNIX

• C was designed to be minimalist:

• Easy to compile into fast machine code

• Nothing “behind the scenes”

• Low level access to memory

...and then came C++
• C++ is an extension to C, from the early

1980s

• C++ is “C with classes”, and a few extra
language features

• ... but still with most of the low-level-ness of
C (no hand-holding)

• Fast, powerful, standardized, and very
popular

• ... but error prone if you are not careful!

C++ is:
✦ Compiled (translated into machine code in

advance, before run-time)

✦ Strongly typed, meaning that each variable has a
type associated with it (float, int, whatever)

✦ High level... but still pretty low

✦ Portable - the same code can often be compiled on
many different kinds of computers with little or no
modification

Writing a C++ program

✦ Programs can be written in any text editor

✦ On the lab machines try gedit, nedit, emacs,
KDevelop, etc.

✦ Via SSH (linux.cs.uiowa.edu) try pico

✦ Use whatever text editor or platform or compiler
you are most comfortable with, but your program
must compile on Linux using g++!

// a sample program, by Greg
#include <iostream>
using namespace std;

int main()
{

int baz = 2;
int foo = 21;
int result;

// multiply some stuff
result = foo * baz;

// output the result
cout << “Hello world: ”

 << result << endl;

 return 0;
}

Compiling/Running it
• 1. Compile with g++

• 2. If it works, run the resulting executable

• 3. Like this:

[gbnichol@serv16 ~/cpp]$ ls
main.cpp
[gbnichol@serv16 ~/cpp]$ g++ -o program main.cpp
[gbnichol@serv16 ~/cpp]$ ls
main.cpp program
[gbnichol@serv16 ~/cpp]$./program
Hello world: 42
[gbnichol@serv16 ~/cpp]

Errors!

• Errors are problems with your program

• Different kinds of errors:

• Compiler errors

• Linker errors

• Runtime errors

Compiler Errors

• Compiler errors are problems with your
code that result in it not compiling

• Code errors, typos, spelling errors, etc.

• Errors must be fixed before the code will
compile; warnings don’t have to be fixed
(but you should probably fix them anyway,
if you can)

Linker Errors

• Each cpp file is compiled into an object file, which
contains the compiled version of that code

• All the object files are “linked” together into a
single executable program

• If the object files don’t mesh together well
(missing functions, duplicate functions, etc.) you
get linker errors

• These must be fixed before you can run your
program

Runtime Errors

• You know... bugs!

• Anytime your program crashes or in general
doesn’t work correctly

• Divide by zero, running out of memory, or just
doing the wrong thing

Errors

• Finding and fixing errors can be tricky and
sometimes frustrating - some errors can be hard
to find (= vs == for example)

• Solution: practice and be patient.

• The only way to get good at this is to do lots of
it!

Thoughts on Programming

• Programming is the process of taking a program and
breaking it down into a sequence of steps you can
put into code.

• This is not always easy.

• Doing it well requires patience and practice.

• It can be fun, though. Really. :-)

Programming (in general)

• Divide the project up into small chunks.

• Write each chunk independently. Use comments to
document anything that needs it.

• Test that chunk. Make sure it works.

• Then move onto other chunks.

• Compile early and often, and fix any errors and
warnings before moving on.

Variables and Memory

• Each variable:

• has a name (identifier)

• has a type (bound at compile-time)

• has its own location in memory (address)

• takes up a certain number of bytes

• ... and of course has a value

Variable Names

• Rules for variable names in C++:

• Can contain letters, numbers, or underscores

• Must begin with a letter or an underscore

• Usually a length limit (compiler dependent) but
long enough to not matter

• Can’t be a reserved word

• C++ is case sensitive

• varName != VARNAME != VarName != varname

int 8pmDinner;
char test-case;
int this_is_a_really_long_variable_name;
float isThisValid;
double wake_up;
char $bob;
double return;
gregWasHere;

Which variable names are valid?

asm
auto
bool
break
case
catch
char
class
const
const_cast
continue
default
delete
do
double

dynamic_cast
else
enum
explicit
export
extern
false
float
for
friend
goto
if
inline
int
long
mutable
namespace
new
operator
private
protected

public
register
reinterpret_cast
return
short
signed
sizeof
static
static_cast
struct
switch
template
this
throw
true
try
typedef
typeid
typename
union

unsigned
using
virtual
void
volatile
wchar_t
while

C++ Reserved Words

Basic Data Types

• int - 124, 3, -100

• float - 12.4, 45.68, -34.22

• char - ‘a’, ‘b’, ‘$’, ‘%’,128, 7, 254

• bool - true, false

The types you might care about:

Except for bool, any of these can be signed or unsigned.

Variable Types (32-bit)

char character, small integer 1 bytes signed: -128 to 127
unsigned: 0 to 255

short short integer 2 bytes signed: -32768 to 32767
unsigned: 0 to 65535

int / long integer 4 bytes signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295

bool boolean value 4 bytes true or false

float floating point value 4 bytes 3.4e +/- 38 (7 digits)

double double precision floating
point value 8 bytes 1.7e +/- 308 (15 digits)

wchar_t wide character 2 bytes 1 wide character

Declaring Variables
• All variables must be declared

before they can be used.

• Declarations allocate memory for
that variable.

int result = 25;

type (implies size)
required

name (identifier)
required

initial value
optional

semicolon
every statement
ends with one

Declaring Variables
Variables can be declared one per line:

int type;
int score = 3;
int aliensKilled;
bool awesome = true;

Or, variables of the same type can be declared
on the same line:

int type, score = 3, aliensKilled;
bool awesome = true;

Variable Initialization

• Variable initializations are optional...

• What happens if a variable is not initialized with a
value?

int result = 25;

int result;

initial value is 25

initial value is what?

Variable Initialization

• Answer: initial value ends being whatever was in
that chunk of memory beforehand

• Probably a garbage value

• C++ compilers do not pre-initialize variables!

• Rule of thumb: always initialize variables

int result = -19358221;

Assigning stuff to variables

• Using the = operator (aka i = 25.3;)

• We can assign numeric literals:

• int types: 3, 0, -42, 167, not 1,345,293

• float types: 2.0, -0.33365f, 3.0e5

• bool: true or false

• ... or an expression of some sort

Arithmetic Operators
• Assignment (=), as in a = 4;

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Modulo (%)

• this only works for integers

• 5 % 3 = 2

Integer Division

• The result of an integer divide is an integer -
the remainder is discarded

• 5 / 3 = 1

• what about 3 / 5?

• Division by zero causes a runtime error

a quick note about...

More Operators!!!!
As a shortcut for this:
aliensKilled = aliensKilled + 10;

You can do this:
aliensKilled += 10;

Operators of this style:
+=
-=
*=
/=
%=

Wow! Even More Operators!!!1!1!
Stuff like this happens a lot:
numberOfLives = numberOfLives + 1;

You can do this instead:
numberOfLives++; (post-increment)
 or
++numberOfLives; (pre-increment)

In the above case, the two are equivalent - but
they’re not always.

Any idea what the difference is?

Pre-Increment vs
Post Increment
• Pre-increment:

• first increments the value, then returns it

• Post-increment:

• first returns the value, then increments it

• this involves making a copy of the original
value, which is in theory less efficient

• doesn’t matter all that much for built-in types

Pre-increment vs Post-increment

#include <iostream>
using namespace std;

int main()
{
 int a = 10;
 cout << a++ << endl;
 return EXIT_SUCCESS;
}

#include <iostream>
using namespace std;

int main()
{
 int a = 10;
 cout << ++a << endl;
 return EXIT_SUCCESS;
}

post-increment: pre-increment:

There are similar operators for decrementing:
aka var-- and --var

Examples
int john = 5, chris = 5, bob = 5;
float perry = 2.5;

john++ * 3;
++chris * 3;

bob / 2; // doesn’t change the
bob % 2; // value of bob

bob *= 3;
perry %= 2;

Conditional Execution

• Most programs don’t unconditionally
compute things straight through

• Often we need to decide whether to
execute a chunk of code, based on some
condition

• Enter conditional statements!

int num1, num2;

// get two numbers from the user
cin >> num1;
cin >> num2;

// compare the numbers
if(num1 > num2)
{
// this gets executed if the above
// condition is true
cout << num1;

}
else
{
// and this gets executed if not
cout << num2;

}

a code snippet...

This code chunk
reads in two
numbers, and
prints out the
bigger one.

Note that
{ and } are used
to group blocks
of statements.

Example

Comparison Operators (!!1!)

• Equality: == if(a == b)

• Not Equal; != if(a != b)

• Greater: > if(a > b)

• Less: < if(a < b)

• Greater or Equal: >= if(a >= b)

• Less or Equal: <= if(a <= b)

Boolean Logic:
combining comparisons

And operator: &&
Or operator: ||
Not operator: !

• if((x > 0) && (x < 12))

• if((x % 2 == 0) || (x < 2))

• if((x < 3) && !(x < 0))

Examples:

Boolean Logic
!true == false
!false == true

(true && true) == true
(true && false) == false
(false && true) == false
(false && false) == false

(true || true) == true
(true || false) == true
(false || true) == true
(false || false) == false

both must
be true

either can
be true

Operator Precedence
 () left to right
 ++x; --x left to right
 x++; x--; +x; -x right to left
 *; /; % left to right
 +; - left to right
 <<; >> left to right
 <; <=; >; >= left to right

 left to right
 && left to right
 || left to right

 right to left=; +=; -=; *=; /=; %=

==; !=

Examples
int foo = 5, bat = 5;

bat++ * 3 / 2 + 1

foo * 3 % 4 / 2

foo *= 2*2

a few quick

• Tip: just use parenthesis to make your meaning clear

... back to if statements
• if the condition is true, an if statement executes the

following single statement or block of statements

• A statement is any valid expression followed by a
semicolon

• A block of statements is anything contained within a
set of { } brackets

if(!milkSmellsBad)
{

drinkMilk();
}

if(!milkSmellsBad)
 drinkMilk();=

else statements
• an else statement is optional; it is executed if the

matching if statement is not true

• same rules apply; the statement or block immediately
following the else is what gets executed

if(jokeIsFunny)
humor += 10;

else
{

throwTomatoes();
humor -= 10;

}

fun with if and else
• you can pile together multiple if/else statements

to produce a chain of conditions

if(scrubsIsOn)
watchScrubs();

else if(theOfficeIsOn)
watchTheOffice();

else if(isNiceDay)
goOutside();

else
doHomework();

nested if statements

if(tornadoSirenIsSounding)
{

if(!(isFirstMondayOfMonth && is9AM))
{

if(houseHasBasement)
hideInBasement();

else
runAway();

whimper();
}

}

if/else statements can be nested in practically any pattern
to produce complicated conditional execution

But be ye careful!
if(value == true)

doThis();
doThat();
playCheckers();

watchScrubs();

if(selfDestructInitiated);
 blowUpShip();

what does this really do?

how ‘bout
this one?

Sample Program

• Formula to convert Celsius to Fahrenheit:

• F = C*1.8 + 32

• Write a program that:

• Accepts Celsius temperature as input

• Converts it to Fahrenheit and displays result

• Classifies the result as too cold, too hot, or
just right

