
 More strings,
 Structs,

 Project two

Some string review
• How are strings represented in C++?

• What is a NULL terminator?

• How much memory should you allocate for a
string?

• What very important thing do you need to do
when putting characters into a string?

• What’s a fast way of declaring and initializing string
variables?

• How do we embed a newline or a quotation mark
in a string

Comparing Strings

• Say we need to
compare two
strings...

• Can we do it this
way?

• Would <, >, <=, or
>= work any better?

char one[10], two[10];

strcpy(one, "hello");
strcpy(two, "hello");

if(other == name)
 cout << "same";
else
 cout << "different";

Comparing Strings

• The usual way to compare strings is
lexicographically - think phone book/dictionary

• One function to do this is strcmp:

int strcmp(const char* s1, const char* s2)

strcmp returns an integer that is:
< 0 when s1 < s2
0 when s1 == s2
> 0 when s1 > s2

For more information...
• The C standard library has many functions for

working with strings:

• formatting/modifying them

• copying/manipulating them

• converting them back and forth from integers,
floats, etc.

• ... and so on

• Google “string.h” and read about these if and
when you need them!

So Far, We Can:

• Declare and use simple data
types (int, float, char, bool, etc.)

• Use those data types in arrays

• This isn’t enough, though: most
complicated programs require
groups of information, all neatly
stored together

Motivation...
• Example: MP3 ID3 tags

• We might want to store
name, bit rate, year,
length, artist, album, etc.

• We’ve learned no
convenient way of doing
this, short of maybe
declaring a variable for
each item.

• This quickly becomes
unworkable

char name[255];
int year;
float length;
int rate;

Introducing struct!
• ... but it makes more sense to group them all together in

a single data type, which we get to define

• We can do this with a C++ concept called a structure

struct id3Tag
{

char name[255];
int year;
float length;
int rate;

};

struct keyword
signals the start
of a structure

definition

name of the
structure type
we’re creating

these are the
members of the

structurestructure definitions
must end with a

semicolon

struct contents
enclosed between

curly brackets

Our Very Own Data Type!
• So now we have our very own data type, called

id3Tag that we can use - at this point id3Tag can
be treated just like any built-in type

• We can declare variables of type id3Tag the same
way we would with any other type:

id3Tag soulBossaNova;
id3Tag* ptrToSong;
id3Tag U2[50];
struct id3Tag ticketToRide;

• Note that we can also treat the word struct like it’s
part of the type - this is a holdover from C

The Rules
• Structure members can be of any type

• Arrays can be structure members

• A structure can be a member of another structure

• A structure can’t contain an instance of itself.

• It can, however, contain pointers to itself.

struct node // bad
{

int payload;
node variable;

};

struct node // OK
{

int payload;
node* variable;

};

Accessing structures
• Statically allocated structures are accessed

using the dot operator (the period):

id3Tag soulBossaNova;
soulBossaNova.year = 1982;
cout << soulBossaNova.year << endl;

id3Tag U2[50];
strcpy(U2[5].name, “Beautiful Day”);

• Members of a structure can be accessed and
used like regular variables, because they are
regular variables - just grouped with others.

• Accessing through a pointer (as with any
dynamically created structure) uses a different
access mechanism: the arrow (->) operator

Accessing structures 2

id3Tag* soulBossaNova = new id3Tag;
soulBossaNova->year = 1982;

• Mixing up access operators will cause a compiler
error

• What would be another way of accessing the
year member?

Accessing structures 2
id3Tag* soulBossaNova = new id3Tag;
soulBossaNova->year = 1982;

• Note that we’re doing dynamic memory allocation
here - this works the same way as it does for all
the “regular” types

• This is where dynamic allocation actually gets
useful (we see this more later)

• Remember, we have to clean up after ourselves:

delete soulBossaNova;

Accessing structures 3

• You can treat variables within a structure
exactly as if they were “regular” variables

• Each of them has the same type and
characteristics they would have if they were
not in a structure

• The structure serves only to group these
variables together - it doesn’t change their
individual properties

Passing Structures

• A structure can be passed as a
parameter to a function, just like
any other type

• By default, structures are passed
by value.

• When/why would you want to
pass by reference instead?

• What are some potential
problems in passing by value?

struct video
{
 int* frame;
 int list[10];
 int title;

};

void func(video v);

Passing Structures By Value
• When structures get passed by value, each member

of the structure gets copied.

• This becomes a problem when a structure contains
pointers:

struct person
{
 char* name;
 int age;
 int zipcode;

};

“tugboats and arson”

struct person
{
 char* name;
 int age;
 int zipcode;

};

(copy)

... back to structures
• Structures can include pointers to other structures

of the same type

• This is how we can start to create more
complicated data structures: lists, trees, graphs, etc.

• An example (from a few slides back): here’s what
each node of a linked list looks like:

struct node
{

int payload;
node* next;

};

points to another
instance of the node
structure

Example:
Linked Lists

• Let’s make a simple linked list structure

• ... and some code that will add integers to it

• This will tie directly into your assignment!

Project Two

• Use an alphabetized linked list that stores the
word and its count

• Whenever a word is encountered, insert it in the
list (if it isn’t there already) and increment its
count

• At the end, print out all the words (in alphabetical
order) and their frequency

Write a program that allows the
user to enter words and counts
their frequency

Project Two

• Checking if a given word is already in the list

• Inserting into the linked list (in alphabetical order)

• ... these two can be done in one step!

• Properly cleaning up the linked list

The tricky bits:

