NMORCE STRINGS,
STRUCTS,
PROJECT TWO

Some string review

® How are strings represented in C++!
What is a NULL terminator?

How much memory should you allocate for a
string?

What very important thing do you need to do
when putting characters into a string?

What’s a fast way of declaring and initializing string
variables?

How do we embed a newline or a quotation mark
In a string

Comparing Strings

char one[10], two[1l0];

strcpy(one, "hello");
strcpy(two, "hello");

if(other == name)
cout << "same":

else
cout << "different";

® Say we need to
compare two
strings...

® Can we do it this
way!?

® Would <,>,<=,0r
>= work any better?

Comparing Strings

® The usual way to compare strings is
lexicographically - think phone book/dictionary

® One function to do this is stremp:

int strcmp(const char* sl, const char* s2)

strcmp returns an integer that is:

<0 whens1<s2
O when s1 ==82
> (0 when s1 >s2

For more information...

® The C standard library has many functions for
working with strings:

® formatting/modifying them
® copying/manipulating them

® converting them back and forth from integers,
floats, etc.

® ...and so on

® Google “string.h” and read about these if and
when you need them!

So Far,We Can:

® Declare and use simple data
types (int, float, char, bool, etc.)

® Use those data types in arrays

® This isn’t enough, though: most
complicated programs require
groups of information, all neatly
stored together

o o Oul boss5a Nova
Ot I vatl O n eooeo ______ ML SR

Soul Bossa Nova (2:45)
Quincy Jones and His Orchestra
Austin Powers Soundtrack

Example: MP3 ID3 tags

Kind: MPEGC audio file Format: MPEC-1, Layer 3
Size: 2.6 MB Channels: Joint Sterec
Bit Rate: 128 kbps ID3 Tag: v1.0

We might want to store o o e
name, bit rate, year, |
length, artist, album, etc.

We've learned no
convenient way of doing
this, short of maybe
declaring a variable for char name[255];:

each item. int year:

float length;
int rate;

This quickly becomes
unworkable

Introducing struct!

® . but it makes more sense to group them all together in
a single data type, which we get to define

® We can do this with a C++ concept called a structure

struct keyword
signals the start name of the

of a structure structure type
definition \ we're creating

Struct id3Tag

struct contents {
enclosed between char name[255];

curly brackets > int year;

float length; | _— these are the
int rate; 4/ members of the
structure

structure definitions

must end witly
semicolon

Our Very Own Data Type!

® So now we have our very own data type, called
id3Tag that we can use - at this point id3Tag can
be treated just like any built-in type

® We can declare variables of type id3Tag the same
way we would with any other type:

1d3Tag soulBossaNova;
1d3Tag* ptrToSong;

1d3Tag U2[50];

struct id3Tag ticketToRide;

® Note that we can also treat the word struct like it’s
part of the type - this is a holdover from C

The Rules

Structure members can be of any type

Arrays can be structure members

A structure can be a member of another structure
A structure can’t contain an instance of itself.

It can, however, contain pointers to itself.

struct node // bad struct node // OK
{ {
int payload; int payload;
node variable; node* variable;

}i }i

Accessing structures

e Statically allocated structures are accessed
using the dot operator (the period):

1id3Tag soulBossaNova;
soulBossaNova.year = 1982;
cout << soulBossaNova.year << endl;

1id3Tag U2[50];
strcpy(U2[5].name, “Beautiful Day”);

® Members of a structure can be accessed and
used like regular variables, because they are
regular variables - just grouped with others.

Accessing structures 2

® Accessing through a pointer (as with any
dynamically created structure) uses a different

access mechanism: the arrow (->) operator

1d3Tag* soulBossaNova

soulBossaNova->year =

= new 1d3Tag;
1982;

® Mixing up access operators will cause a compiler

error

® What would be another way of accessing the

year member?

Accessing structures 2

1d3Tag* soulBossaNova = new 1d3Tag;
soulBossaNova->year = 1982;

Note that we're doing dynamic memory allocation
here - this works the same way as it does for all
the “regular” types

This is where dynamic allocation actually gets
useful (we see this more later)

Remember, we have to clean up after ourselves:

delete soulBossaNova;

Accessing structures 3

® You can treat variables within a structure
exactly as if they were “regular” variables

Each of them has the same type and
characteristics they would have if they were
not in a structure

The structure serves only to group these
variables together - it doesn’t change their
individual properties

Passing Structures

struct video

{
int* frame;
int 1list[10];
int title;

void func(video v);

A structure can be passed as a
parameter to a function, just like
any other type

By default, structures are passed
by value.

When/why would you want to
pass by reference instead!?

What are some potential
problems in passing by value?

Passing Structures By Value

® When structures get passed by value, each member
of the structure gets copied.

® This becomes a problem when a structure contains

pointers:

“tugboats and arson”

struct perso7/ \

{ (copy)
char* name;
int age;

int zipcode;

}i

struct person

{

char* name;
int age;
int zipcode;

}i

... back to structures

® Structures can include pointers to other structures
of the same type

® This is how we can start to create more
complicated data structures: lists, trees, graphs, etc.

® An example (from a few slides back): here’s what
each node of a linked list looks like:

struct node

{
int payload; .
node* next; <€ points to another
}s instance of the node
4

structure

Example:
Linked Lists

o
0
L
v
v
0

® | et’'s make a simple linked list structure
® ...and some code that will add integers to it

® This will tie directly into your assighment!

Write a program that allows the
user to enter words and counts
their frequency

® Use an alphabetized linked list that stores the
word and its count

Whenever a word is encountered, insert it in the
list (if it isn’t there already) and increment its

count

At the end, print out all the words (in alphabetical
order) and their frequency

The tricky bits:

® Checking if a given word is already in the list

® |nserting into the linked list (in alphabetical order)
® ... these two can be done in one step!

® Properly cleaning up the linked list

