
C-style strings

float foo[] = {1,2.32,3,4,5.0};
int throwAmt = 5;
int quux = 10;

void pityFool(int* foo)
{

int throwAmt = 999;
bool donePitying = false;
while(!donePitying)
{

int pityAmt = 100;
int* foo = &quux;
*foo += throwAmt;

}
}

int main()
{

int* quux = new int[50];
pityFool(quux);

}

Review
Let’s take a look-see
at this code and
figure it out.

(This is not terribly
well-written code,
by the way... make
yours better than
this!)

this person is a foo, and the
FooSlayer shall pity him

More Review

• How do you allocate a dynamic array?

• How do you clean it up?

• How do you clean up a single, dynamically
allocated object?

• What chunk of memory do dynamically
allocated objects come from?

• how ‘bout statically allocated objects?

Hey! Wouldn’t it be nice if...

string word = “pickles”;
word += “ are tasty!”;
cout << word << endl;

you could do stuff like this?

You sure can! Just... not today.

Today we’re learning about C-style strings,
which are quite a bit harder to use

and more annoying! Hooray!

C Strings

• It’s important to know these - you’ll come
across them a lot, even when using C++

• A string in C is nothing special - just an array
of char’s; each char holds a single
character

• Messing with strings involves lots of nifty
pointer arithmetic and manipulation

About Chars
• A character in C++ is a number (an 8-byte

integer, to be exact)

• The numbers are coded using a standard
mapping called ASCII: (American Standard
Code for Information Interchange)

• ‘a’ = 97, ‘b’ = 98, ‘A’ = 65, etc.

• You can find a table of these in about a
gazillion places on the web

• You can assign single ASCII character values
to a char using single quotes:

char letter = ‘A’;
cout << letter;

• Or you can assign a char an integer value
(since it is an integer type):

char letter = 65;
cout << letter;

• You can also do arithmetic on characters:

char letter = ‘a’ + 2;
cout << letter;

Arrays of Chars
• Since a string is a sequence of characters, we

can represent it as an array of characters:

char turk[12];

• This array can hold up to 12 characters, as
you’d expect

• This brings up the old array problem, though:
how can you tell how big an array is?

• Other than storing a separate counter variable,
there’s no easy way to tell how many characters are
in a string.

• The C solution to this is to have the last ‘character’
be a special character called a null terminator,
which has the value 0 - after this the string is
considered “ended”, even if there is more following.

• There needs to be space to store the null terminator
too, so each character array needs to have at least
one more slot than you have characters.

null
s

C Strings

• turk has room for only 11 actual characters,
and one null terminator:

char turk[12];

c h r i s t o p h e r \0

• Even though 11 characters will fit, you don’t
need 11 characters. Less is fine:

c h r i s \0

length: 11

length: 5

Declaring Strings (Character Arrays)

• Because a C-style string is just a character array,
we can declare it like any other array:

char kelso[7];

• If you want to pre-initialize it with numbers, that’s
OK too: a char is an integer, after all!

char kelso[7] = {1,2,3,4,5,6,7};

• More useful, though, to be able to fill it with characters...

char kelso[7] = {‘d’,’o’,’c’,’t’,’o’,’r’,’\0’};

Declaring Strings (Character Arrays)

• A shortcut in C/C++ is to use double-quotes in
the initialization, instead of having to specify each
character individually:

char kelso[7] = “doctor”;

• Note that we aren’t specifying the null terminator
here: any string literal in C/C++ has the null
terminator automatically appended.

• (A string literal means: any time you see stuff in
double quotes in your source code file)

More Null Terminator Stuff
• The value of the null terminator is zero.

Note that we specify it using a backslash-
zero: ‘\0’

• You can embed this inside a string, too:

char CSBuilding[] = “MacLean\0 Hall”;
cout << CSBuilding << endl;

• Even though there’s more characters following
“MacLean”, once a function encounters the
null terminator it will stop printing

A Quick Detour:

• Notice that we had to use ‘\0’, instead of just ‘0’?
Why is that?

• The backslash (\) tells the compiler that this is the
start of an escape sequence: it means that the
character following the backslash has a special
meaning

• So ‘\0’ means “null terminator”, whereas ‘0’ just
means ‘zero’

• Not the integer zero, mind you: it means the
character zero, which is actually the integer 48!

Fun with Escape Sequences!

A Quick Detour:
Fun with Escape Sequences!

What does this mean?
It means that sometimes what you see isn’t what you
get, and that you have to be careful with backslashes!

Some common escape sequences:

\0
\n
\’
\”
\\

null terminator
newline (like endl)
single quote
double quote
an actual backslash

A Quick Detour:
Fun with Escape Sequences!

FILE* file = fopen(“C:\nichols\test.txt”,”r”)

Here’s an actual chunk of (C) code that someone might write.
What’s wrong with this?

FILE* file = fopen(“C:\\nichols\\test.txt”,”r”)

We want these particular backslashes to be interpreted as
actual backslashes, not escape sequences, so do it like this:

cout << “I am very tired.\nI will go to sleep now.\n”;

On the other hand, escape sequences (newlines in particular)
are often very handy, so feel free to use them:

Declarations:
Review / Check Yer Understanding

char bob[] = 1;
char bob[] = {1};
char bob[] = {'1', '\0'};
char bob[] = {'1', 0};
char bob[] = "hello";
char bob[] = {'h','e','l','l','o'};
char bob[30] = {'h','e','l','l','o','\0'};
char bob[3] = {'h','e','l','l','o','\0'};

Which of these are valid and/or proper?

char* bob = new char[50];

Remember, we can also create strings dynamically:

Note about Declarations

char janitor[20] = “fearitude”;

Stuff like this is nice and handy, but you only
get to assign a string (or a group of numbers/

characters) to an array when you’re declaring it.

char janitor[20];
janitor = “fearitude”;

This doesn’t work: (why not?)

String Functions
• We’ve been using <iostream> for weeks now, but

there are other libraries: a handy one for string functions
is <cstring> or <string.h>

• Remember: this will include a header file, made up of
function prototypes, but not the functions themselves:
those get linked in later

• <cstring> gets you access to the old-school string
functions in the C Standard Library

• ... it’s important to know how these work, and what
they’re doing behind the scenes!

example: strcpy

char buffer[100];
strcpy(buffer, “Hi, I’m a string!”);

Here’s the prototype:

This is a function that copies one string into another.

char *strcpy(char *dest, const char *src);

Here’s a sample usage:

Anything bother you about this?

• When you put something into a string or array or any sort
of data buffer, C/C++ does not check to make sure
that the data “fits”.

• You are responsible for doing that.

• If you’re not careful, strcpy and friends can be dangerous
to use, because it will happily write past the end of the
string, clobbering whatever happens to be in that memory.

• This isn’t just bad programming; it can also be used to
compromise your machine.

A Quick Detour:
Fun with Computer Security!

A Quick Detour:

• So the moral of the story:

• When you’re coding your own functions, make
sure that you include code to prevent any
overwriting of the buffer. (How would you do
this?)

• Use “safe” C functions (strncpy, etc) when you
can instead of the “dangerous” ones (like
strcpy, wgets, etc)

Fun with Computer Security!

Anyway... string functions.

• strlen works by counting each character in a string
until it hits a null terminator (which is not included
in the count). It’s a pretty simple function.

• Let’s try writing our own version of strlen!

Here’s the prototype of
strlen, a function that

calculates the length of a string:

int strlen(const char *s);

Another Handy Library...
• ... is <cctype>, or <ctype.h>

• This is another group of functions
from the C Standard Library that deal
with classifying and modifying
characters

cout << isalpha(‘a’) << endl; // 1
cout << isalpha(‘8’) << endl; // 0
cout << isdigit(‘9’) << endl; // 1
cout << ispunct(‘#’) << endl; // 1
cout << isalnum(‘?’) << endl; // 0
cout << toupper(‘e’) << endl; // E

some examples:

More Programming!

• Let’s write a function kinda like strcpy, in that it copies a
source buffer to a destination buffer, which we will create
dynamically.

• It will include a maximum number of characters to copy
(does this prevent overflow?)

• It will only copy characters that are either whitespace
characters or alphanumeric.

• It will use lots of pointers! Hooray!

to tie a lot of this stuff together...

char* gcopy(char *dest, int maxCharsToCopy);

