POINTERS & DYNAMIC
MEMORY

Array Review !’s
® How do you declare an array?
® What’s important while declaring one?
® A multi-dimensional array?

® How do you access an array!

® A multi-dimensional array?

® How do you pass an array to a function!?

® How do you determine how many elements
are in an array!

® How do you make a copy of an array?

Pointer Review ?’s

How do you declare a pointer?

How do you make a pointer point to something?

Can you change which variable a pointer points to!?

Can you change the value of what a pointer points to?

Can you make a pointer point to a different type of
variable?

What is dereferencing?

What do you need to be careful of when
dereferencing!?

Pointer Quizlet

int main()

{
float ff = 5.5;
float* ptr = &ff;

cout << " 1: " << &ff << endl;
cout << " 2: " << ptr << endl;
cout << " 3: " << &ptr << endl;
cout << " 4: " << *ptr << endl;
cout << " 5: " << ff << endl;

cout << " 6: " << *&ff << endl;

return O0;

Grokking Pointers

How are arrays related to pointers!?

How could we make a swap function with
pointers instead of pass-by-reference?

How would you declare (and use) a pointer
to a pointer? (We haven’t covered this explicitly
but hopefully we can figure it out)

Can you have two pointers that point to the
same variable!

Pointer Arithmetic

® Pointers are variables, and you can do math
on them...

® .. butit’s not the kind of math you're
probably expecting.

® VWhat would this do?

int quux 42 ;
int *ptr &Qquux;

ptr *= 2;

Pointer Arithmetic 2

® Only addition and subtraction are allowed
® The other arithmetic ops make no sense!

® The math doesn’t work the way you'd expect:

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;
ptr++;

® |[f ptr was pointing to memory location
8064 before, where is it pointing now!?

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;
ptr++;

® |[f ptr was pointing to memory location
8064 before, where is it pointing now!?

® Pointer arithmetic units are the same as the
type size!

® Aka, int pointers work in units of 4, because
the size of an int is 4 bytes

® This is handy: in this example, what value is
ptr pointing to now!

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;

What are some different
ways to refer to the third
element of this array, 15?

What would happen if we
did this:
ptr += 3;

Scope and Lifetime

Scope is the context in which a C++ variable
name exists.You can use the same variable name in
two (or more) functions, because the functions will
have different scopes.

Scope is defined by curly brackets: { }

void sunshine()

—= The scope of sunshine()

Local Scope

® Each function has its own scope - variables
that are usable between the functions
starting and ending curly brackets { }

int doSomething(int quux)

int foo = 0;
while(value < 10)

{

int count =0;

foo and quux

are visible within

this scope.What
about baz?

Local Scope Part Deux

® A while loop (or any set of curly brackets)
will create its own scope, and can have its
own variables.

int doSomething(int quux)

{
int foo = 0;
while(value < 10)

count is only visible
within the scope of the
while loop.

Local Scope #3

for(int 1 = 0; 1 < 5; 1i++)

{
}

what’s the scope for
these variables?

int doSomething(int quux)

{
}

functions and for loops
have variables declared
in their headers - the
scope of those is the
scope of the function
or loop

int foo()

{

int low =
bool flag
cout << "low2:

while(flag)
{

int low
int count
cout <<
flag

}

cout <<
cout <<

"count:
"lowd:

main()

5;
"lowl:

int low
cout <<
foo();

return 0;

7;

"low3:
false;

<< low <s”endl;

8;

ow << endl;

local definition of low in

" while() hides previous

definition

flag visible here because no

~~ declaration overrides it

count not visible outside of
— while()

(7
<< count << endl;

<< low << endl;

‘;----~“-

<< low << endl;

\

[

This is the low declared in
the scope of foo()

This low is in the scope of

main - it is not accessible
Sy

from foo

Global Scope

® A function declaration in global scope: a global
function

® A variable declaration in global scope:a global
variable (or object)

® A global object is visible from everywhere: exists
throughout the duration of the program

int GLOBAL = 42;

int main()

{

return 0;

}

Global Variables ==

Mostly.

Why? Using global variables in a function can
hide the behavior of the function.

Any function can modify a global variable —
changing the behavior of other functions
that might use it.

When are globals useful?

Lifetimes of Variables

® A lifetime is how long a variable “lives” -
how long the program keeps memory
allocated for it

® | ocal variables are “born” when the
program enters their scope. They “die” when
when the program leaves their scope.

® What is the lifetime of a global variable?

Static Memory

® So far we've been dealing with static memory -
variables allocated statically, at compile time.

® Static memory is declared on the stack

® Static memory is very easy for the compiler to deal
with:

® amount of memory fixed at compile time
® no chance of memory leaks

® Downside(s) of static memory?

Dynamic Memory

Dynamic memory is more powerful -

you don’t need to know the size until
runtime

Can be used as necessary

Dynamic memory comes from the heap - a
pool of memory set aside for this

Downside(s) of dynamic memory?

Dynamic Allocation

® Memory is dynamically allocated through...

introducing the new keyword:

int* foo = new int;

® This syntax allocates a single int. You can also
do this for arrays:

int* baz = new int[50];

Yet Another Review:

int* foo = new int;

foo is a dynamically allocated integer.
How do we use it!?

int* baz = new int[50];

baz is a dynamically allocated array of
integers. How do we use it!

How are these two things different?

dynamic arrays

® Arrays allocated via dynamic memory are
used exactly the same way that arrays
allocated statically are.

® Only one minor difference regarding the

array pointer variable - anybody remember
what it is?

Some Questions

® VWhen does the life of a

statically allocated variable
end?

@ ® When does the life of a

dynamically allocated variable
end?

for(int 1 = 0; i < 10; 1i++)

{

int array = new int[15];

Clean’ng ® See the problem with the above

code!

U P ® Static variables get de-allocated

right when they go out of scope -
dynamic variables need to be
deleted explicitly!

® Otherwise you get memory leaks

Memory Leaks

When you use a pointer to dynamically
allocate memory...

... and the pointer goes out of scope before
you have deallocated the memory...

Then you have a memory leak.

These are (usually) cleaned up by the
operating system after the program exits,
but the program can still run out of memory
while it is running

Cleaning Up

® Single objects, allocated with new, get cleaned
up with the keyword delete:

int* foo = new int;

delete foo;

® Arrays, allocated with new and [], get cleaned
up with the keyword delete[]:

int* baz = new int[10];

delete[] baz;

Fun with
delete!

® What happens if we try and
delete an array of dynamically
allocated stuff?

What if we try and delete a
pointer that has been assigned
the address of a static variable!?

What if we try to delete[] a
pointer that has been allocated
with a single new?

Useless Program
Time!

Let’s write a program
that gets a number
from the user,
dynamically allocates
an array, fills it with n
powers of two, and
prints ‘em all out.

Sormetirmes | ust popup far ho
particular reazon, ke now,

