
pointers & Dynamic
memory

Array Review ?’s
• How do you declare an array?

• What’s important while declaring one?

• A multi-dimensional array?

• How do you access an array?

• A multi-dimensional array?

• How do you pass an array to a function?

• How do you determine how many elements
are in an array?

• How do you make a copy of an array?

Pointer Review ?’s
• How do you declare a pointer?

• How do you make a pointer point to something?

• Can you change which variable a pointer points to?

• Can you change the value of what a pointer points to?

• Can you make a pointer point to a different type of
variable?

• What is dereferencing?

• What do you need to be careful of when
dereferencing?

Pointer Quizlet
int main()
{
 float ff = 5.5;
 float* ptr = &ff;

 cout << " 1: " << &ff << endl;
 cout << " 2: " << ptr << endl;
 cout << " 3: " << &ptr << endl;
 cout << " 4: " << *ptr << endl;
 cout << " 5: " << ff << endl;
 cout << " 6: " << *&ff << endl;

 return 0;
}

Grokking Pointers

• How are arrays related to pointers?

• How could we make a swap function with
pointers instead of pass-by-reference?

• How would you declare (and use) a pointer
to a pointer? (We haven’t covered this explicitly
but hopefully we can figure it out)

• Can you have two pointers that point to the
same variable?

Pointer Arithmetic
• Pointers are variables, and you can do math

on them...

• ... but it’s not the kind of math you’re
probably expecting.

• What would this do?

int quux = 42;
int *ptr = &quux;

ptr *= 2;

Pointer Arithmetic 2
• Only addition and subtraction are allowed

• The other arithmetic ops make no sense!

• The math doesn’t work the way you’d expect:

• If ptr was pointing to memory location
8064 before, where is it pointing now?

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;
ptr++;

• If ptr was pointing to memory location
8064 before, where is it pointing now?

• Pointer arithmetic units are the same as the
type size!

• Aka, int pointers work in units of 4, because
the size of an int is 4 bytes

• This is handy: in this example, what value is
ptr pointing to now?

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;
ptr++;

What are some different
ways to refer to the third
element of this array, 15?

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;

What would happen if we
did this:

ptr += 3;

Scope and Lifetime

• Scope is the context in which a C++ variable
name exists. You can use the same variable name in
two (or more) functions, because the functions will
have different scopes.

• Scope is defined by curly brackets: { }

void sunshine()
{

 ...
}

The scope of sunshine()

Local Scope
• Each function has its own scope - variables

that are usable between the functions
starting and ending curly brackets { }

int doSomething(int quux)
{

int foo = 0;
while(value < 10)
{

int count =0;
...

}
int baz;

}

foo and quux
are visible within
this scope. What

about baz?

Local Scope Part Deux
• A while loop (or any set of curly brackets)

will create its own scope, and can have its
own variables.

int doSomething(int quux)
{

int foo = 0;
while(value < 10)
{

int count =0;
...

}
int baz;

}

count is only visible
within the scope of the

while loop.

Local Scope #3

int doSomething(int quux)
{

...
}

for(int i = 0; i < 5; i++)
{

...
}

functions and for loops
have variables declared
in their headers - the
scope of those is the
scope of the function
or loopwhat’s the scope for

these variables?

int foo()
{

int low = 6;
bool flag = true;
cout << "low2: " << low << endl;
while(flag)
{

int low = 7;
int count = 8;
cout << "low3: " << low << endl;
flag = false;

}
cout << "count: " << count << endl;
cout << "low4: " << low << endl;

}

int main()
{

int low = 5;
cout << "low1: " << low << endl;
foo();
return 0;

}

local definition of low in
while() hides previous
definition

flag visible here because no
declaration overrides it

count not visible outside of
while()

This is the low declared in
the scope of foo()

This low is in the scope of
main - it is not accessible
from foo

Global Scope
• A function declaration in global scope: a global

function

• A variable declaration in global scope: a global
variable (or object)

• A global object is visible from everywhere: exists
throughout the duration of the program

int GLOBAL = 42;

int main()
{
 return 0;

}

Global Variables ==

• Mostly.

• Why? Using global variables in a function can
hide the behavior of the function.

• Any function can modify a global variable –
changing the behavior of other functions
that might use it.

• When are globals useful?

Lifetimes of Variables

• A lifetime is how long a variable “lives” -
how long the program keeps memory
allocated for it

• Local variables are “born” when the
program enters their scope. They “die” when
when the program leaves their scope.

• What is the lifetime of a global variable?

Static Memory
• So far we’ve been dealing with static memory -

variables allocated statically, at compile time.

• Static memory is declared on the stack

• Static memory is very easy for the compiler to deal
with:

• amount of memory fixed at compile time

• no chance of memory leaks

• Downside(s) of static memory?

Dynamic Memory

• Dynamic memory is more powerful -
you don’t need to know the size until
runtime

• Can be used as necessary

• Dynamic memory comes from the heap - a
pool of memory set aside for this

• Downside(s) of dynamic memory?

Dynamic Allocation

• Memory is dynamically allocated through...

• POINTERS!!!!!!!! (woo!)

int* foo = new int;

introducing the new keyword:

• This syntax allocates a single int. You can also
do this for arrays:

int* baz = new int[50];

Yet Another Review:
int* foo = new int;

int* baz = new int[50];

foo is a dynamically allocated integer.
How do we use it?

baz is a dynamically allocated array of
integers. How do we use it?

How are these two things different?

dynamic arrays

• Arrays allocated via dynamic memory are
used exactly the same way that arrays
allocated statically are.

• Only one minor difference regarding the
array pointer variable - anybody remember
what it is?

Some Questions

• When does the life of a
statically allocated variable
end?

• When does the life of a
dynamically allocated variable
end?

Cleaning
Up

• See the problem with the above
code?

• Static variables get de-allocated
right when they go out of scope -
dynamic variables need to be
deleted explicitly!

• Otherwise you get memory leaks

for(int i = 0; i < 10; i++)
{

int array = new int[15];
...

}

Memory Leaks

• When you use a pointer to dynamically
allocate memory...

• ... and the pointer goes out of scope before
you have deallocated the memory...

• Then you have a memory leak.

• These are (usually) cleaned up by the
operating system after the program exits,
but the program can still run out of memory
while it is running

Cleaning Up

• Single objects, allocated with new, get cleaned
up with the keyword delete:

int* foo = new int;
...
delete foo;

• Arrays, allocated with new and [], get cleaned
up with the keyword delete[]:

int* baz = new int[10];
...
delete[] baz;

Fun with
delete!

• What happens if we try and
delete an array of dynamically
allocated stuff?

• What if we try and delete a
pointer that has been assigned
the address of a static variable?

• What if we try to delete[] a
pointer that has been allocated
with a single new?

Useless Program
Time!

Let’s write a program
that gets a number
from the user,
dynamically allocates
an array, fills it with n
powers of two, and
prints ‘em all out.

