
Arrays
 & Pointers

Project One

• You should be working on this, if you’re not
already

• Due Friday, midnight-ish

• Any questions on this?

What
does this
need to
work?

#include <iostream>

int main()
{

int a = 10, b = 15;
swap(a, b);
return EXIT_SUCCESS;

}

void swap(int a, int b)
{

int temp = a;
a = b;
b = temp;

}

review:

More review

• How do we set up default parameters?

• How do we set up function overloading?

• What are the pros and cons of either/both
of these things?

The Problem:
• What if we wanted to store the first 8 elements of

the Fibonacci sequence? (1,1,2,3,5,8,13,21)

• You could use variables, but that would be clumsy...

Fibonacci!
int fib1 = 1; // not good
int fib2 = 1;
...
int fib8 = 21;

• Also, you’d have to declare all the
required variables at compile time -
what if we needed 100? 1000?

again!

Arrays: a solution

• Data structure built into C++

• Arrays are a consecutive group of memory
locations that have the same type, and are all
referred to by the same name

• i.e., 10 integers in a row, all referred to by
the same name - listOfGrades

• Think of a list in everyday life - except each
element in the list has the same type

Declaring Arrays

example:
int listOfNums[5];

in general:

type arrayName[arraySize];

• What are the initial values of these?

• Size of the array has to be determined at compile time
and can’t be changed later (sort of)

example with initialization:
int listOfNums[5] = {1,2,3,4,5};

expression that can
be evaluated at
compile time

Array Indices
• What is an array index? (starts at 0, not 1!)

• Using the array name, along with the array index, an
array location can be treated just like a variable:

int testArray[10];

// writing into an array
testArray[5] = 234;

// reading from an array
cout << testArray[3*2] << endl;

• Example with a for loop...

Array Storage
• The elements of an array are stored

consecutively in memory

int listOfNums[5] = {10,-2,13,94,-25};

10

-12

13

94

-25

0xbffffaf8

0xbffffafc

0xbffffb00

0xbffffb04

0xbffffb08

what this might end up
looking like in memory...

what are these?

How Arrays Work
• To figure out how to access an array

element, the compiler/program needs:

• the base address of the array in memory

• the index of the element

• the size of the data type in bytes

element address = base address + (data size * index)

• This works because arrays are stored
contiguously

• First element of an array is at 0, not 1!

Passing Arrays to Functions
• To pass an array to a function, you use this

notation:

int sum(int list[])
{
}

square brackets indicate
that this is an array

• Are arrays passed by reference
or by value?

• Let’s write this function...

Another example

• Let’s write a function to determine and
return the biggest and smallest value in an
array of floats.

(float)

More about Arrays

• Arrays are passed by reference, and here’s why:

• What is actually getting passed is the address
of the beginning of the chunk of memory -
the array’s first value

• Can we make copies of an array like this? Why
or why not?

int arrayOne[5] = {1,2,3,4,5};
int arrayTwo[5];

arrayTwo = arrayOne;

Multidimensional Arrays
• You can declare arrays with as many

dimensions as you want

• All elements still are the same type, though

// declaring
int array[2][2] = { {1,2}, {3,4} };

// using
cout << array[0][0] << endl;
cout << array[1][1] << endl;

Pointers!!!

(direct access)

(access via card)

Pointers!!!
• Pointers are one of the most powerful (and

tricky) features of C/C++

• A pointer is a kind of variable that contains a
memory location as its value

• The pointer is “pointing” to whatever is in that
memory location

0xbffffafc 5

address: 0xbffffafc

int count = 5;
int* countPtr = &count;

Pointer
Anatomy

int *pointer = NULL;

pointers must have a type - lets the
compiler know that this pointer is
pointing to an int, for example

* lets the compiler know that
this is a pointer variable

name follows the standard
C++ variable naming rules

either make the
pointer point
somewhere, or assign
NULL so it doesn’t
point somewhere
unintended

declaring pointers

• The * modifies the variable name, not the type!

int* a, b;
int jennysNumber = 8675309;

• In this example, a is a pointer to an integer...
b is just a plain old integer, not a pointer

• This will not compile.

Making the Pointer
“Point” Somewhere

• Pointers store the address of a variable.

• You get the address of something with the
reference (or address-of) operator: &

int count = 5;
int *countPtr = &count;

• & is a unary operator that returns the
memory address of its operand

null pointers

• A pointer that doesn’t point to anything is
known as a null pointer

// these are equivalent
int *ptr1 = NULL;
int *ptr2 = 0;

NULL is a constant
that means 0

• Pointers should always be initialized! Make
them point somewhere, or make them a null
pointer. (What happens if you don’t?)

“Using Pointers”

int count = 5;
int *countPtr = &count;

cout << countPtr << endl;

• What does the following code output?

• The numeric value of a pointer is almost
never useful - we mainly care about what the
pointer points to

• When is the numeric value useful?

“Using Pointers” 2

• Introducing: another use for the * symbol, this
time known as a dereference operator

int count = 5;
int *countPtr = &count;

cout << *countPtr << endl;

this code will
print out 5

• * in front of a pointer means: “return the value
of what this is pointing to”. This is known as
dereferencing the pointer

(electric boogaloo)

One *, two meanings

• When you see a * in a variable declaration,
after a type, then you are declaring a pointer.

• When you see a * before variable (or
expression) that’s not being declared, it’s a
dereference.

int* thisIsAPointer;
char* lassie;

cout << *pointer << endl;
number += *count;

Son of “Using Pointers”
So:

& gets returns the address of a variable

* takes an address and returns the value
of what is at that address

and:

& and * are sort of each others’ inverses:

int gazonk = 5;
cout << *(&gazonk) << endl;

“Using Pointers” Strikes Back
• Dereferencing is what gets you into trouble

if your pointers are somehow incorrect!

• This is the root cause of many, many, many
bugs in software

int *ptr = NULL;
cout << *ptr << endl;

int *ptr2;
cout << *ptr2 << endl;

what do these do?

One more time...

int* var = 1234;

// what does this do?
var = 89;

// how about this one?
*var = 89;

Why do we care about
any of this pointer stuff?

• Pointers allow:

• dynamic memory allocation of stuff

• complicated data structures

• iterating through strings

• ... and much much more

Pointers and Arrays
• Simply put:

• an array is a pointer - it points to the first
element of the array.

• A pointer can be used exactly like an array

int numbers[] = {4,8,15,16,23,42};
int *array = numbers;
cout << numbers[2] << endl;

• At this point, numbers and array are
basically equivalent!

Pointer Arithmetic
• Pointers are variables, and you can do math

on them...

• ... but it’s not the kind of math you’re
probably expecting.

• What would this do?

int quux = 42;
int *ptr = &quux;

ptr *= 2;

Pointer Arithmetic 2
• Only addition and subtraction are allowed

• The other arithmetic ops make no sense!

• The math doesn’t work the way you’d expect:

• If ptr was pointing to memory location
8064 before, where is it pointing now?

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;
ptr++;

• If ptr was pointing to memory location
8064 before, where is it pointing now?

• Pointer arithmetic units are the same as the
type size!

• Aka, int pointers work in units of 4, because
the size of an int is 4 bytes

• This is handy: in this example, what value is
ptr pointing to now?

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;
ptr++;

What are some different
ways to refer to the third
element of this array, 15?

int numbers[] = {4,8,15,16,23,42};
int *ptr = numbers;

What would happen if we
did this:

ptr += 3;

Grokking Pointers

• How could we make a swap function with
pointers instead of pass-by-reference?

• How would you declare (and use) a pointer
to a pointer?

• Can you have two pointers that point to the
same variable?

