
Functions
more stuff about

than you ever wanted to know

Quickie Review
• How do you declare a function that takes 3

integer parameters and returns nothing?

• How do you call that function?

• What would happen if you tried to call that
function using a floating point value as input?

• Write a loop that counts from 0 to 20, but
only using even numbers.

• Write some code that gets a number
between 1 and 100 from the user and
validates it.

Question:
int main()
{

cout << meaningOfLife() << endl;
return EXIT_SUCCESS;

}

int meaningOfLife()
{

return 42;
}

Will this work? Why or why not?

Nope.

prototype.cpp: In function `int main()':
prototype.cpp:8: `meaningOfLife' undeclared (first use this function)
prototype.cpp:8: (Each undeclared identifier is reported only once for each
function it appears in.)
prototype.cpp: In function `int meaningOfLife()':prototype.cpp:13: `int
meaningOfLife()' used prior to declaration

compiler output:

C++ files are compiled from top-to-bottom; the
compiler doesn’t “know” about meaningOfLife() because
it hasn’t “seen” it yet.

int main()
{

cout << meaningOfLife()
<< endl;
return EXIT_SUCCESS;

}

int meaningOfLife()
{

return 42;
}

Function Prototypes

• Functions need to be either defined above the
point at which they are called, or...

• There needs to be a function prototype
above where that function is called.

• A function prototype is identical to the first
line in the function body... just without a body,
and followed by a semicolon.

int meaningOfLife();

int meaningOfLife(bool isFun, int, int); // prototype

int main()
{

cout << meaningOfLife() << endl;
return EXIT_SUCCESS;

}

int meaningOfLife(bool isExciting, int b, int c)
{

return 42;
}

• A prototype requires a return value, a name, and argument
types. It can also have argument names - these are optional.

• The argument names can be different than those used in the
function.

• Everything else must be exactly the same!

Uses of Prototypes
• The compiler uses prototypes to validate

function calls without needing to have the
actual function around

• Before a function call can be compiled, the
compiler needs to know that it has the
appropriate function:

• correct name

• correct argument types (by type
conversion if necessary)

Header Files

• Many, many function
prototypes live in header
files that are #include-d,
like <iostream>

• The actual code for these
functions are in other files,
or in libraries that will be
linked into the executable

• We’ll cover how to do this
later. Probably.

Quizlet

void increment(int);

int main()
{

int var = 5;
increment(var);
cout << var << endl;

}

void increment(int x)
{

x++;
}

• Does this compile?

• If so, what is the
output?

Pass by Value
void increment(int);

int main()
{

int var = 5;
increment(var);
cout << var << endl;

}

void increment(int x)
{

x++;
}

• Default method of passing
arguments is pass-by-value.

• This means that copies get
made of each argument,
and the function
manipulates its own copies
- as if they were local
variables.

• What happens to the
copies of the parameters
when the function ends?

Pass by Value
void swap(int x, int y)
{

int temp;
temp = x;
x = y;
y = temp;

}

• What happens to the
copies of the parameters
when the function ends?

• They get discarded!

• Any changes that were
made to those variables
are lost.

• What if you want a
function to change the
values of its parameters?

will this work?

Pass by Reference

void swap(int& x, int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}

• An alternative is pass-by-reference, in which you
pass a reference to the variable

• Then the function will manipulate the variable itself,
not a copy (as in pass-by-value)

• Any changes to the variable will “stick”

references are denoted
by an & between the

type and the
parameter name

References and
Function Prototypes

• The prototype and the
function still have to
match...

• ... including references!

void increment(int);

int main()
{

int var = 5;
increment(var);
cout << var << endl;

}

void increment(int& x)
{

x++;
}

will this compile?

Passing parameters by
reference

void increment(int&);

int main()
{

int var = 5;
increment(var);
cout << var << endl;

}

void increment(int& x)
{

x++;
}

When looking at the
function call,
parameters passed by
reference look exactly
like those passed by
value.

void doStuff(int& foo, int& baz, int reep)
{
 foo = 4;
 baz = foo * reep;
 foo++;
}

int phooey = 1, gazonk = 2;
doStuff(phooey, gazonk, 2)

int phooey = 1, gazonk = 2;
doStuff(phooey, phooey, 2)

int phooey = 1, gazonk = 2;
doStuff(phooey, 2, gazonk)

Are all of these
examples valid?

Why or why not?

Passing by Reference

• When is pass-by-reference a good idea?

• Why should you be careful when using
pass-by-reference?

• What side-effects does it have?

Default Arguments

• This is a nifty way to specify defaults for
some (or all) arguments to a function

• When you’re calling that function, you don’t
have to specify every argument if there is a
default

• Very handy, very widely used

void printLetterOnScreen(char letter,
 int xPos = 10, int yPos = 10,
 int repeatCnt = 1)

{
// do stuff

}

Default Arguments Example

printLetterOnScreen(‘g’);

printLetterOnScreen(‘p’, 15);

printLetterOnScreen(‘w’, 15, 42);

printLetterOnScreen(‘x’, 15, 42, 5);

These are all valid ways to call this function:

void printLetterOnScreen(char letter,
 int xPos = 10, int yPos = 10,
 int repeatCnt = 1)

{
// do stuff

}

Default Arguments Example

• Only trailing arguments can have default values

• If a argument has a default, all of the following
arguments also need them

• When calling a function, “skipping” arguments is illegal

printLetterOnScreen(‘p’, 15);

15 will be the value of xPos, not yPos or repeatCnt

Default Arguments and
Function Prototypes

• By convention, default arguments usually go
in the the function prototype

• They can also be put in the function
definition itself - but not in both places

• some compilers allow this, as long as the
default arguments match - g++ doesn’t

Function Overloading

• Don’t be fooled by the scary-sounding
name: function overloading is a good thing!

• The idea: multiple functions can be defined
with the same name

• The compiler will automagically pick which
function to call, based on the number and
type of arguments

void blegh(char letter)
{
}

void blegh(char letter, int reps)
{
}

void blegh(int number)
{
}

void blegh(float realNum)
{
}

void blegh(bool maybe)
{
}

blegh(25);

blegh(‘a’);

blegh(false);

blegh(‘q’, 5);

blegh(5 > 2);

blegh(97, 5);

blegh(32.0);

overloading examples which function gets called?

Ambiguity
• When the compiler can’t figure out which version of

an overloaded function to call, the function is said to
be ambiguous

• This isn’t always obvious, as you saw with the 32.0

• The previous example, now with a default parameter:

void blegh(char letter)
{
}

void blegh(char letter, int reps = 0)
{
}

blegh(‘a’);
goes to which function?

These are ambiguous, so
you get a compiler error

Overloading and return types

• Overloaded functions need to have differing
parameters - different return types is not enough

int doStuff()
{

// ...
}

double doStuff()
{

// ...
}

• This will cause a compiler error

• Why do you think this is?

More in-class Coding!

• Let’s define some print
functions that can print out
different variable types, and
at different positions.

whoooo!

Project 1:

• Project One: now available on the class
website

• Due: next Friday, September 8, at 11:59 PM
(electronically submitted)

Palindromic Numbers

Palindromic Numbers
• Palindromic numbers read the same front-to-

back and back-to-front

• e.g., 12321, 99, 1221, etc.

• Algorithm to generate a P.N. from an integer:

• Reverse the number

• Add the reversed number to the original number to get a
new number

• If you’ve made a palindrome, great! Otherwise repeat this
process using the new number

• This works for most - not all - positive integers

Project One:

• Get (and validate) a starting and ending number
from the user, between 10 and 1,000 (why?)

• For each number between the starting and ending
numbers (inclusive), find out if that integer can be
used to generate a palindrome in <= 12 steps

• If yes: print the number, the palindrome, and the
number of steps it took

• If no: print the number and a message saying that
no palindrome could be generated.

What to do:
• Write, debug, and test your code.

• Write a README file with:

• your name

• compilation instructions (include the exact command
you used to compile)

• the amount of time you spent on this project

• anything notes you’d to include (in particular, anything
you’d like me to know when grading)

• Submit a directory containing your README and code
using the CS dept’s submit procedure (check the web site)

Thoughts
• Be sure to read the actual assignment

(posted on the website)

• This isn’t a hard assignment, but there’s
some tricky steps in here.

• What are they?

• What are the individual “chunks” of code
you could write and test individually?

• How will you structure your program to
make it clean and readable?

