more stuff about

FUNCTIONS

than you ever wanted to know

Quickie Review

How do you declare a function that takes 3
integer parameters and returns nothing?

How do you call that function?

What would happen if you tried to call that
function using a floating point value as input?

Write a loop that counts from 0 to 20, but
only using even numbers.

Write some code that gets a number
between | and 100 from the user and
validates it.

Question:

int main()

{

cout << meaningOfLife() << endl;
return EXIT SUCCESS;

}

int meaningOfLife()

{

return 42;

}

Will this work? Why or why not!

int main()

{
cout << meaningOfLife()

NOPe. << endl;

return EXIT SUCCESS;
}

int meaningOfLife()

{

return 42;

compiler output: }

prototype.cpp: In function "int main()":

prototype.cpp:8: 'meaningOfLife' undeclared (first use this function)
prototype.cpp:8: (Each undeclared identifier is reported only once for each
function it appears in.)

prototype.cpp: In function "int meaningOfLife()":prototype.cpp:13: "int
meaningOfLife()' used prior to declaration

C++ files are compiled from top-to-bottom; the

compiler doesn’t “know’” about meaningOfLife() because
it hasn’t “seen” it yet.

Function Prototypes

® Functions need to be either defined above the
point at which they are called, or...

® There needs to be a function prototype
above where that function is called.

® A function prototype is identical to the first
line in the function body... just without a body,
and followed by a semicolon.

int meaningOfLife();

int meaningOfLife(bool isFun, int, int); // prototype

int main()

{

cout << meaningOfLife() << endl;
return EXIT SUCCESS;

}

int meaningOfLife(bool isExciting, int b, int c)

{

return 42;

}

A prototype requires a return value,a name, and argument
types. It can also have argument names - these are optional.

The argument names can be different than those used in the
function.

Everything else must be exactly the same!

Uses of Prototypes

® The compiler uses prototypes to validate
function calls without needing to have the
actual function around

® Before a function call can be compiled, the
compiler needs to know that it has the
appropriate function:

® correct hame

® correct argument types (by type
conversion if necessary)

D< Header Files

® Many, many function
o prototypes live in header
i files that are #include-d,
like <iostream>

® The actual code for these
functions are in other files,
or in libraries that will be
linked into the executable

® We'll cover how to do this
later. Probably.

Quizlet

void increment(int); ® Does this compile!?

int main() ® |f so, what is the
{ output!?
int var = 5;
increment(var);
cout << var << endl;

}

void increment(int x)

{

X++;

}

Pass by Value

void increment(int);

int main()

{

}

int var = 5;
increment(var);
cout << var << endl;

void increment(int x)

{
}

X++;

® Default method of passing
arguments is pass-by-value.

This means that copies get
made of each argument,
and the function
manipulates its own copies
- as if they were local
variables.

What happens to the
copies of the parameters
when the function ends!?

Pass by Value

® What happens to the

void swap(int x, int y) .

{ copies of the parameters
int temp; when the function ends?
temp = X;
X Y

v = temp; ® They get discarded!

® Any changes that were
made to those variables
are lost.

will this work?

® What if you want a
function to change the
values of its parameters!?

Pass by Reference

® An alternative is pass-by-reference, in which you
pass a reference to the variable

® Then the function will manipulate the variable itself,
not a copy (as in pass-by-value)

® Any changes to the variable will “stick™

void swap(int& x, int &y)

references are denoted/

by an & between the
type and the
parameter name

References and
Function Prototypes

void increment(int);

® The prototype and the
function still have to
int var = 5; match...

increment(var);

cout << var << endl; ® ...including references!

int main()

{

}

void increment(int& x)

{

X++;

}

will this compile?

Passing parameters by
reference

void increment(inté&);

int main()

{
int var = 5;
increment(var);
cout << var << endl;

}

void increment(int& x)

{

X++;

}

When looking at the
function call,
parameters passed by
reference look exactly

like those passed by
value.

void doStuff(int& foo,
{
foo =
baz =
foo++;

4;
foo * reep;

int& baz, int reep)

int phooey = 1,

gazonk = 2;
doStuff(phooey, 2

gazonk,

)

Are all of these
examples valid?

int phooey = 1,

gazonk = 2;
doStuff(phooey, phooey, 2

)

Why or why not?

int phooey = 1, gazonk = 2;
doStuff(phooey, 2, gazonk)

Passing by Reference

® When is pass-by-reference a good idea?

® Why should you be careful when using
pass-by-reference!

® VWhat side-effects does it have!?

Default Arguments

® This is a nifty way to specify defaults for
some (or all) arguments to a function

® When you're calling that function, you don’t

have to specify every argument if there is a
default

® Very handy, very widely used

Default Arguments Example

void printLetterOnScreen(char letter,
int xPos = 10, int yPos = 10,
int repeatCnt = 1)

// do stuff

These are all valid ways to call this function:
printLetterOnScreen(‘g’);

printLetterOnScreen(‘p’', 15);
printLetterOnScreen (15, 42);

printLetterOnScreen(‘x’, 15, 42, 5);

Default Arguments Example

void printLetterOnScreen(char letter,
int xPos = 10, int yPos = 10,
int repeatCnt = 1)

// do stuff

® Only trailing arguments can have default values

® [f a argument has a default, all of the following
arguments also need them

® When calling a function,“skipping” arguments is illegal

printLetterOnScreen(‘p’, 15);
)

|5 will be the value of xPos, not yPos or repeatCnt

Default Arguments and
Function Prototypes

® By convention, default arguments usually go
in the the function prototype

® They can also be put in the function
definition itself - but not in both places

® some compilers allow this, as long as the
default arguments match - g++ doesn’t

Function Overloading

® Don’t be fooled by the scary-sounding
name: function overloading is a good thing!

® The idea: multiple functions can be defined
with the same name

® The compiler will automagically pick which
function to call, based on the number and

type of arguments

overloading examples which function gets called?

blegh(25);
void blegh(char letter)

{
; blegh (

void blegh(char letter, int reps)

§ blegh (

void blegh(int number)
{ blegh (
}

void blegh(float realNum) blegh(
{

}

void blegh(bool maybe) blegh (

{
}

blegh (

Ambiguity

® When the compiler can’t figure out which version of
ah overloaded function to call, the function is said to

be ambiguous

void blegh(char letter)

{
}

void blegh(char letter, int reps

{
}

nis isn’t always obvious, as you saw with the 32.0

ne previous example, now with a default parameter:

blegh(‘a’);
goes to which function?

These are ambiguous, so
you get a compiler error

Overloading and return types

® Overloaded functions need to have differing
barameters - different return types is not enough

int doStuff() double doStuff()

{ {
7 ooc 1 oo

} }

® This will cause a compiler error

® Why do you think this is?

More in-class Coding!

whoooo!

® | et’s define some print
functions that can print out

different variable types, and
at different positions.

Project |:

Palindromic Numbers

® Project One: now available on the class
website

® Due: next Friday, September 8,at | 1:59 PM
(electronically submitted)

Palindromic Numbers

® Palindromic numbers read the same front-to-
back and back-to-front

® eg.,12321,99, 1221, etc.

® Algorithm to generate a PN.from an integer:

Reverse the number

Add the reversed number to the original number to get a
new number

If you’ve made a palindrome, great! Otherwise repeat this
process using the new number

® This works for most - not all - positive integers

Project One:

Get (and validate) a starting and ending number
from the user, between 10 and 1,000 (why?)

For each number between the starting and ending
numbers (inclusive), find out if that integer can be
used to generate a palindrome in <= |2 steps

If yes: print the number, the palindrome, and the
number of steps it took

If no: print the number and a message saying that
no palindrome could be generated.

What to do:

® Write, debug, and test your code.
® Write a README file with:
your name

compilation instructions (include the exact command

you used to compile)

the amount of time you spent on this project

anything notes you'd to include (in particular, anything
youd like me to know when grading)

® Submit a directory containing your README and code
using the CS dept’s submit procedure (check the web site)

Thoughts

Be sure to read the actual assignment
(posted on the website)

This isn’t a hard assighment, but there’s
some tricky steps in here.

What are they!

What are the individual “chunks” of code
you could write and test individually?

How will you structure your program to
make it clean and readable?

