
Loops
Functions

and

Ann!ncements
• Office hours have been moved to

MLH 301

• Also... new office hours on
Tuesdays, 5:30 - 8 PM

• Sample code posted

• Homework 1 will be posted by
class time on Wednesday!

Quick Review...
• variables, data types, expressions

• declare an unsigned integer named score

• declare a double-precision floating-point value
named distance with an initial value of 43.523

• conditional statements

• print “hello” if both of these are true:

• distance is less than 25.0

• a bool named running is true or score is
greater than 100

Quick
Review
2...

#include <iostream>
using namespace std;

int main()
{

int gazonk, foo = 2 * 5;
int baz = 10 - foo;

if(baz)
if(foo)

cout << "Alpha" << endl;
else

cout << "Beta" << endl;

cout << "gazonk: " << gazonk << endl;

return 0;
}

What is the
output of this
program?

Quick
Review
3...

#include <iostream>
using namespace std;

int main()
{

double foo = (2.0 * 5.0) / 1.0;
int baz = 10 - foo;

if(baz)
cout << "Alpha" << endl;

return 0;
}

What is the
output of this
program?

• Computers are very good at doing repetitive
tasks

• Loops aid in doing repetitive work

• Nearly all complex programs will have loops

Loops

Loops
• C++ has three kinds of loops:

• for loop

• while loop

• do-while loop

• Each of these work kind of like the if
statement: they execute the single statement
(or block of statements) that follows them

while Loop
• Condition is checked at the beginning of

every iteration of the loop

• If the condition evaluates to true, the body
of the loop is executed

int number = 0;

while(number < 5)
{

number++;
cout << number << endl;

}

condition

body

while Loop

• One way to think of this:

• syntax and operation of a while loop is the
same as a for loop...

• ... except it will execute the body until the
condition is true

• Again, watch out for stuff like this:

while(tired);
 sleep();

do-while Loops
• A while loop checks the condition before

every iteration of the loop

• so if the condition is never true, the loop
will never execute

• A do-while loop checks the condition at
the end of every iteration

• side-effect: the body of the loop will
always execute at least once, even if the
condition is never true

Anatomy of a do-while

int number = 0;

do
{

number++;
cout << number << endl;

}
while(number < 5);

condition

body
again, single statement
or block of statements

checked after each iteration
of the loop has executed

do keyword
comes immediately before

the body of the loop

semicolon
the while is at the end of
the loop, so it must be

terminated by a semicolon

The for loop

• C-style for-loops are used in C, C++, Java,
Perl, PHP, and a bunch of others

• The for-mat (heh heh) of a for loop:

for(initialization; condition; update)
{

// body of loop
}

for(initialization; condition; update)
{

// body of loop
}

initialization: Executed first - just once. Used to
setup any counter variables used in the loop.
ex: int i = 0; w = 4;

condition: Just like a while, do-while, or if.
Checked before every iteration, as in a while loop.
ex: i < 20; w != 8;

update: Executed after each iteration, used to update
variables (increment, decrement, etc).
ex: i++; q += 4; k *= 5

for-loop
examples

for (int i=0; i<10; i++)
{

cout << “i = ” << i << endl;
}

for (int i=0; i<=10; i++)
{

cout << “i = ” << i << endl;
}

char i;
for (i =‘a’; i<=‘z’; i++)
{

cout << “i =“ << i << endl;
}

for(char i=‘z’; i>=‘a’; i--)
{

cout << “i = “ << i << endl;
}

does this work?
why or why not?

what kind of loop would
you use for...

• Printing out every even number between 0
and 100?

• Getting input from the user and making sure
it is valid?

• Waiting for the time to be 10:00 AM before
continuing?

Infinite Loops
• An infinite loop is a loop where the

“condition” is always true, so the loop can
never terminate

• Be careful of these!

int i = 0;
while(i < 10)
{
}

for(; ;)
{
}

while(true)
{
}

break;
• The break keyword breaks out of the

current loop

• breaks out of the current loop only

• any problems with this?

while(true)
{

while(true)
{

if(rand() % 10 == 5)
break;

}
}

give me a

break;
give me a

break is useful
but a bit ugly - it is
usually a bit more
elegant to rewrite
the loop condition
instead.

How could we
rewrite this?

// class algorithm
while(!classOver)
{

stareAtClock();

if(reallyBored)
break;

}

doFunStuff();

continue;
...skips the rest of the loop body and moves
straight onto the next iteration.

// print grades
for(int i = 0; i < numStudents; i++)
{

if(student[i].droppedClass)
continue;

cout << student[i].name << endl;
cout << student[i].grade << endl;
cout << student[i].classRank << endl;

}

In-class
programming exercise

Let’s make a program
that prints out the
Fibonacci sequence.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

Fibonacci!

Functions

• Functions are a way to group chunks of code
together so they can be reused later

• ... otherwise you end up with huge, hard-
to-maintain chunks of code

• Enables you to structure a program in a
more modular way

• Functions in programming are similar to
functions in mathematics.

Functions, cont.

• Each function has its own code - just like the
code in the main function

• Each function can access its own variables,
but not the variables from any other function

• Functions can also access global variables -
variables declared outside of any function,
including the main function

Function Calls

• Function calls cause the following to happen:

• The currently executing function is
suspended

• Program control is passed to the the
function being invoked

• When the function has finished executing,
the suspended calling function resumes
execution

useless example!
#include <iostream>
using namespace std;

int timesTwo(int input)
{

int output = input * 2;
return output;

}

int main()
{

cout << “two times two is: “
 << timesTwo(2) << endl;

return EXIT_SUCCESS;
}

Anatomy of a Function

int add(int x, int y)
{

int result;
result = x + y;
return result;

}

return type
(can be any C++ type

or an object)

function name parameters
(each parameter needs

a type and a name)

code
return

(function must
return an integer)

function return types
• A function has to have some return type

declared

• Return types can be any basic C++ data type

• Can also be any object type (that bit comes
later)

• If a function doesn’t return a type, the return
type is void

• with a void return type, returning anything
causes a compiler error

Function Parameters
• Parameters are how we provide input to the

function (return value is the output)

• Each parameter has a type and a name... no
two names can be the same. (why not?)

int add(int x, int y)
{
}

int x, int y are the parameters,
indicating this function will need to be called
with two integers as input.

How to call functions
• You call a function using its name, followed

by the parameters in parenthesis, separated
by commas

• Even if a function has no parameters, you still
need to follow the function name with ()

int max = maximum(3, 50);

int ans = UltimateAnswer();

• The compiler makes sure you call a function
with the correct number of arguments:

• The compiler also performs type-checking
on the different arguments.

int max = maximum();
simpleinterest.cpp:6: too few arguments to function `int maximum(int, int)

float var1 = 12.3;
float var2 = 10.5;
int max = maximum(var1, var2);

simpleinterest.cpp:35: warning: passing `float' for argument passing 1 of `int maximum (int, int)
simpleinterest.cpp:35: warning: passing `float' for argument passing 2 of `int maximum (int, int)

Why is this a warning and not an error?

quick detour: type conversion

• Often the compiler can automatically convert one
type to another - this is called an implicit type
conversion

• When this can be done without losing data, the
compiler will usually just do it quietly

• int to float: 32 becomes 32.0, etc.

• Some types can be converted but not without
changing the value

• float to int: 56.8 gets truncated; becomes 56

• The compiler will issue a warning here

quick detour: type conversion

• You can also do an explicit type conversion, in
which you force the compiler to convert the type,
regardless of consequences

float baz = 38.6;

// these are all equivalent
int foo = (int)baz;
int foo = (int)(baz);
int foo = int(baz);

• This lets the compiler know that the conversion was
intended, and usually makes the warnings go away

Question:
int mystery(int x, int y, int z)
{
	
 int value = x;

	
 if(y > value)
	
 	
 value = y;
	

	
 if(z > value)
	
 	
 value = z;
	

	
 return value;
}

cout << mystery(6, 2, 5) << endl;

what is the output the following statement?

(Another) Question:
int main()
{

cout << meaningOfLife() << endl;
return EXIT_SUCCESS;

}

int meaningOfLife()
{

return 42;
}

Will this work? Why or why not?

Answer: No.

prototype.cpp: In function `int main()':
prototype.cpp:8: `meaningOfLife' undeclared (first use this function)
prototype.cpp:8: (Each undeclared identifier is reported only once for each
function it appears in.)
prototype.cpp: In function `int meaningOfLife()':prototype.cpp:13: `int
meaningOfLife()' used prior to declaration

compiler output:

C++ files are compiled from top-to-bottom; the
compiler doesn’t “know” about meaningOfLife() because
it hasn’t “seen” it yet.

int main()
{

cout << meaningOfLife()
<< endl;
return EXIT_SUCCESS;

}

int meaningOfLife()
{

return 42;
}

Function Prototypes

• Functions need to be either defined above the
point at which they are called, or...

• There needs to be a function prototype
above where that function is called.

• A function prototype is identical to the first
line in the function body... just without a body,
and followed by a semicolon.

int meaningOfLife();

int meaningOfLife(bool isFun, int, int); // prototype

int main()
{

cout << meaningOfLife() << endl;
return EXIT_SUCCESS;

}

int meaningOfLife(bool isExciting, int b, int c)
{

return 42;
}

• A prototype requires a return value, a name, and argument
types. It can also have argument names - these are optional.

• The argument names can be different than those used in the
function.

• Everything else must be exactly the same!

