SMART POINTERS

Preprocessor Review

® What is an “include guard” on a header file!?
What does it look like?

® Write a Swap TimesTwo macro that accepts
two arguments, swaps ‘em, and multiplies
them by two.

® Why are macros not good in C++? What
should they be replaced with!?

C++ Review

What are the functions automatically included in
every class if you don’t specify them yourself?

When working with inheritance, in what order are
constructors/destructors called?

What is “minimal evaluation’?

How do you dynamically
allocate an array of
Cat’s, C-style?

What does virtual
mean in C++-land?

| i
o~

About Pointers @

i

® Pointers are useful and necessary in C/C++

® ...and yet,a major cause of bugs!

® dangling pointers, NULL pointers, memory
leaks, and so on

® What can we do to keep the useful stuff but
get rid of some of the error-prone stuff!

Smart Pointers

® We can make simple class objects act like
pointers

® Where have we seen something like this
before! How did that work?

® What would you want a “smart pointer” to
act like? How would you expect it to be
implemented!?

S
\?f/

® A simple smart pointer class comes w/ C++:auto_ptr

® Part of the declaration is below...

® How does this class work?

template <class T> class auto ptr

{
T* ptr;

public:
auto_ptr(T* p = 0) : ptr(p) {}
~auto ptr() {delete ptr;}
T& operator* () {return *ptr;}
T* operator->() {return ptr;}

//

void foo() ® Here’s the same

{ .
MyClass* p(new MyClass); code with and

p->DoSomething(); without using
delete p; auto_ ptr:
}

(without auto_ptr)

® What happens to
P at the end of

foo()?

(with auto_ptr)

void foo()

{
auto ptr<MyClass> p(new MyClass);

p—->DoSomething();

Why do we care!

® The big answer: fewer bugs! (hopefully)
® automatic cleanup (fewer memory leaks)
® automatic initialization (no garbage pointers!)

® dangling pointers... what are these!

MyClass* p(new MyClass);

MyClass* q = p;

delete p;

p->DoSomething () ; // Watch out! p is now dangling!
p = NULL; // p is no longer dangling
g->DoSomething|() ; // Ouch! g is still dangling!

Makin’ Copies

® What should happen when a pointer is copied?
There’s no “right” answer to this - it depends on
what you want your code to do:

only let one pointer point to an object

create a whole new copy of the object pointed to
transfer “ownership” when a pointer is copied
use reference counting

use reference linking: maintain a list of
pointers that point to the same object

use copy-on-write

Dangling Pointers

® auto ptr uses the first strategy: only allow one
pointer to point to an object

® How does the following code accomplish this!?

template <class T>
auto ptr<T>& auto ptr<T>::operator=(auto ptr<T>& rhs)
{
if (this != &rhs) {
delete ptr;
ptr = rhs.ptr;
rhs.ptr = NULL;
}

return *this;

Copy-On-Write

big objects, something called copy-on-write
ks very well

ith COWY, only the pointer is copied...

... but when before the object is modified, a
separate copy of the object is made and the new
copy is what gets changed

This gives the illusion of each pointer “owning”
its own object, but can be more efficient

How can COW make things more complex!?

Exception Safety

® Here’s a simple code snippet using pointers:

® What happens if DoSomething() throws an
exception!?

® How would smart pointers help this situation?

void foo()

{
MyClass* p(new MyClass);
p—->DoSomething();
delete p;

STL Containers

® The easiest way to store different kinds of objects
in a single container object

® | ike in Project 6: make a vector<Account*>
and we can store pointers to any object derived
from Account in that vector

® The big prob

o After we're c

em with this: cleanup!

one with the container we need to

manually delete all the pointers in there

® Also, this is not exception-safe!

More STL-ness

® How would we use auto_ptr’s to deal with
these problems?

® How would that help?

® Random note: STL containers sometimes
copy/delete their elements behind the
scenes. This means that some smart pointers
are not safe to use with STL containers.

Why not!

Which Kind ‘O Pointer?

® local variables: auto ptr is
usually the right choice

® it’s simple, it’s standard

® class members: you could use auto_ptr...
why would this not always be a good choice!

® STL containers: auto_ptr has the

previously-discussed issues; generally another
class is needed

