
Smart pointers

Preprocessor Review

• What is an “include guard” on a header file?
What does it look like?

• Write a SwapTimesTwo macro that accepts
two arguments, swaps ‘em, and multiplies
them by two.

• Why are macros not good in C++? What
should they be replaced with?

C++ Review
• What are the functions automatically included in

every class if you don’t specify them yourself?

• When working with inheritance, in what order are
constructors/destructors called?

• What is “minimal evaluation”?

• How do you dynamically
allocate an array of
Cat’s, C-style?

• What does virtual
mean in C++-land?

About Pointers

• Pointers are useful and necessary in C/C++

• ... and yet, a major cause of bugs!

• dangling pointers, NULL pointers, memory
leaks, and so on

• What can we do to keep the useful stuff but
get rid of some of the error-prone stuff?

Smart Pointers

• We can make simple class objects act like
pointers

• Where have we seen something like this
before? How did that work?

• What would you want a “smart pointer” to
act like? How would you expect it to be
implemented?

template <class T> class auto_ptr
{
 T* ptr;
public:
 auto_ptr(T* p = 0) : ptr(p) {}
 ~auto_ptr() {delete ptr;}
 T& operator*() {return *ptr;}
 T* operator->() {return ptr;}
 // ...
};

• A simple smart pointer class comes w/ C++: auto_ptr

• Part of the declaration is below...

• How does this class work?

• Here’s the same
code with and
without using
auto_ptr:

• What happens to
p at the end of
foo()?

void foo()
{
 MyClass* p(new MyClass);
 p->DoSomething();
 delete p;
}

void foo()
{
 auto_ptr<MyClass> p(new MyClass);
 p->DoSomething();
}

(without auto_ptr)

(with auto_ptr)

Why do we care?
• The big answer: fewer bugs! (hopefully)

• automatic cleanup (fewer memory leaks)

• automatic initialization (no garbage pointers!)

• dangling pointers... what are these?

MyClass* p(new MyClass);
MyClass* q = p;
delete p;
p->DoSomething(); // Watch out! p is now dangling!
p = NULL; // p is no longer dangling
q->DoSomething(); // Ouch! q is still dangling!

Makin’ Copies
• What should happen when a pointer is copied?

There’s no “right” answer to this - it depends on
what you want your code to do:

• only let one pointer point to an object

• create a whole new copy of the object pointed to

• transfer “ownership” when a pointer is copied

• use reference counting

• use reference linking: maintain a list of
pointers that point to the same object

• use copy-on-write

Dangling Pointers
• auto_ptr uses the first strategy: only allow one

pointer to point to an object

• How does the following code accomplish this?

template <class T>
auto_ptr<T>& auto_ptr<T>::operator=(auto_ptr<T>& rhs)
{
 if (this != &rhs) {
 delete ptr;
 ptr = rhs.ptr;
 rhs.ptr = NULL;
 }
 return *this;
}

Copy-On-Write

• For big objects, something called copy-on-write
works very well

• With COW, only the pointer is copied...

• ... but when before the object is modified, a
separate copy of the object is made and the new
copy is what gets changed

• This gives the illusion of each pointer “owning”
its own object, but can be more efficient

• How can COW make things more complex?

Exception Safety
• Here’s a simple code snippet using pointers:

• What happens if DoSomething() throws an
exception?

• How would smart pointers help this situation?

void foo()
{
 MyClass* p(new MyClass);
 p->DoSomething();
 delete p;
}

STL Containers
• The easiest way to store different kinds of objects

in a single container object

• Like in Project 6: make a vector<Account*>
and we can store pointers to any object derived
from Account in that vector

• The big problem with this: cleanup!

• After we’re done with the container we need to
manually delete all the pointers in there

• Also, this is not exception-safe!

More STL-ness

• How would we use auto_ptr’s to deal with
these problems?

• How would that help?

• Random note: STL containers sometimes
copy/delete their elements behind the
scenes. This means that some smart pointers
are not safe to use with STL containers.
Why not?

Which Kind ‘O Pointer?

• local variables: auto_ptr is
usually the right choice

• it’s simple, it’s standard

• class members: you could use auto_ptr...
why would this not always be a good choice?

• STL containers: auto_ptr has the
previously-discussed issues; generally another
class is needed

