= CAUTION |

-h:-ﬁi ~ THIS SIGN HAS

_::a:* SHARP EDGES,.; '

,ﬁ, DO NOT TOUCH THE EDGES OF THIS smu ; -

I i . e N e

C PKEPKOCESSOK

Some Random Review
Questions

How do we get an entire line from an istream?

How do we tell the istream to discard all the data
remaining until the end of the line?

What’s an abstract method? What is it useful for?

What is the fastest way to multiply something by 6!

How would we write a swap function that can swap
any type, but defaults to using int’s?

How do you declare a vector of Cows’s... how do
you search for stuff in it using STL methods?

c::-‘:{

e

The Basics &

Compiling is a multi-stage process A

In the first stage, the code gets sent
through the preprocessor

The preprocessor handles the code before
the actual compiling process starts

Once the preprocessor has handled (and
maybe changed) the code, the compiler gets
to compile that code

Preprocessor Uses

® There are typically three uses for the
preprocessor:

® code - include a code file, skip chunks of
code, conditionally include code, etc.

® constants - define constants

® macros - typically, small “functions” that are
expanded at compile time

® Preprocessor typically start at the left edge

of the screen, and always start with the #
symbol (know any?)

#include

® The #include statement is actually a
preprocessor directive

® |t tells the compiler to “paste” the included
file in place of the #include statement

® The compiler “sees” it as one long file

#include <iostream>

Constants

® \We can use the #define directive like this:

#define PI 3.14159

® Now every time Pl is used in that source file,
it will be replaced with 3.14159

® This is often used for defining constants (like
this one!)

® By convention, #define'd constants are
uppercase

H#Hdefine

® #define works like this:

#define [name] [value]

® ... but [value] means “anything to
the end of the current line”

® Be ye careful:

#define PI 3.14 // I like pie!

PI + 1;

In other words...

® Pl (or whatever) is going to get replaced
with exactly what is in the #define directive

#define PI PLUS ONE 3.14159 + 1

= PI_PLUS ONE * 5

® What is wrong with this? What could be
done to fix it?

...and one more thing...

® |t’s possible to #define a name without glvmg
it a value.

#define GREG WAS HERE

o GREG WAS HERE is now
defined, but doesn’t have a value

® This can be useful in conjunction with another
set of directives, as we'll see later

Conditional Compilation

The preprocessor can be used to determine
if a chunk of code will ever make it to the
compiler

There’s a whole set of conditional directives:

o #Hif #Helif, Helse, #Hifdef, #Hifndef

Hif
® The #if statement takes a numerical

argument that evaluates to true if the
argument is non-zero.

® Every #if block must end with an #endif

DATA

$if 3%4 A this can be a simple

void doStuff() numerical expression - but it
{ can’t use any variables or
// does stuff functions - why?

}
#endif what happens if the

condition evaluates to zero!?

H#if commenting

® The #if statement can be a fast way to
“comment out” large blocks of code:

#if O
void doStuff() ® The code between the

{ #if 0 and #endif never
} gets to the compiler

void doMoreStuff () ® From the compiler’s
{ perspective, it’s as if that

iendif code doesn’t exist!

a few of

The Others

.. Helse and #elif

e #Helse is an else; #Helif

#if X == stands for else-if

printf("one\n");
felif X == ® They work pretty much

printf("two\n"); like you'd expect
#else
printf("three\n"); ® The entire block still

#endif needs to end with
#Hendif

Hifdef

® The #ifdef directive is like #if...

® |nstead of checking a numerical value, it
checks to see if the argument is defined

#ifdef INC DOSTUFF s this checks to see if
B INC DOSTUFF was defined,

void doStuff() either with or without a value

for this to work, there would
need to be a

#define INC DOSTUFF
earlier in the code

One Application...

// data.h
class data

{

int x;

}i

// stuff.h
#include “data.h”

// main.cpp
#include “data.h”
#include “stuff.h”

® Ve touched on this earlier
in the semester...

® |t's easy to accidentally
include the same header file
multiple times

® data.h is getting pulled into
main.cpp directly, and via

stuff.h

® What is the problem with
this?

Include Guards

® We can use the preprocessor to make sure
the same header only gets included once per
source file:

#define DATA_H argument is not defined

class data

{ if DATA_H is not #defined,

int x; then it has never been
}i included; include it and then
Hdefine it so it won’t be

EERULS #included again

Macros

® The other major use of the
preprocessors is to define
macros

® A macro is a #define that
can accept arguments:

#define MACRO NAME(argl, arg2, ...) [code to expand]

® Macros aren’t of any particular type

® They get “expanded” directly into the code

Tricksy Macros

® A simple example:

#define MULT(X, y) X * y

® \We'd use the macro like this:

int z;
z = MULT(3 + 2, 4 + 2);

® What would you expect this to expand to!?
What does it expand to? How do we fix this?

How ‘bout this one?

® Another simple macro:

#define ADD FIVE(a) (a) + 5

® But are problems is we use it like this:

int x = ADD FIVE(3) * 3;

® What would you expect this to expand to!
What does it expand to? How do we fix this?

One more...

® There’s a weird trick you can do, using the
bitwise exclusive-or to swap two variables

® Here’s a macro to implement that:

#define SWAP(a, b) a "= b; b "= a; a

® Sometimes this works fine:

® VWhen would this
not work fine? How
would we fix it?

int a
SWAP (

Why Macros Suck

® By now you may have realized why people
hate using macros:

ney’re picky

ney often have unintended consequences
® They aren’t typesafe

® Macros were used a lot in C - what
is often used instead in C++?

Multiline Macros

® |h C/C++,a backslash at the end of the line
means ‘‘extend this line onto the next line”

® Ve can use this to make macros easier to
read and write

® For instance, we could rewrite the swap

macro to look like this:

#define SWAP(a, b) {

