
C Preprocessor

Some Random Review
Questions

• How do we get an entire line from an istream?

• How do we tell the istream to discard all the data
remaining until the end of the line?

• What’s an abstract method? What is it useful for?

• What is the fastest way to multiply something by 6?

• How would we write a swap function that can swap
any type, but defaults to using int’s?

• How do you declare a vector of Cow’s... how do
you search for stuff in it using STL methods?

The Basics

• Compiling is a multi-stage process

• In the first stage, the code gets sent
through the preprocessor

• The preprocessor handles the code before
the actual compiling process starts

• Once the preprocessor has handled (and
maybe changed) the code, the compiler gets
to compile that code

Preprocessor Uses
• There are typically three uses for the

preprocessor:

• code - include a code file, skip chunks of
code, conditionally include code, etc.

• constants - define constants

• macros - typically, small “functions” that are
expanded at compile time

• Preprocessor typically start at the left edge
of the screen, and always start with the #
symbol (know any?)

#include

• The #include statement is actually a
preprocessor directive

• It tells the compiler to “paste” the included
file in place of the #include statement

• The compiler “sees” it as one long file

#include <iostream>

Constants
• We can use the #define directive like this:

#define PI 3.14159

• Now every time PI is used in that source file,
it will be replaced with 3.14159

• This is often used for defining constants (like
this one!)

• By convention, #define’d constants are
uppercase

#define
• #define works like this:

#define [name] [value]

• ... but [value] means “anything to
the end of the current line”

• Be ye careful:

#define PI 3.14 // I like pie!

x = PI + 1;

In other words...

• PI (or whatever) is going to get replaced
with exactly what is in the #define directive

#define PI_PLUS_ONE 3.14159 + 1

x = PI_PLUS_ONE * 5

• What is wrong with this? What could be
done to fix it?

... and one more thing...

• It’s possible to #define a name without giving
it a value.

#define GREG_WAS_HERE

• GREG_WAS_HERE is now
defined, but doesn’t have a value

• This can be useful in conjunction with another
set of directives, as we’ll see later

Conditional Compilation

• The preprocessor can be used to determine
if a chunk of code will ever make it to the
compiler

• There’s a whole set of conditional directives:

• #if, #elif, #else, #ifdef, #ifndef

#if
• The #if statement takes a numerical

argument that evaluates to true if the
argument is non-zero.

• Every #if block must end with an #endif

#if 3*4
void doStuff()
{
 // does stuff
}
#endif

this can be a simple
numerical expression - but it
can’t use any variables or
functions - why?

what happens if the
condition evaluates to zero?

DATA

#if commenting
• The #if statement can be a fast way to

“comment out” large blocks of code:

#if 0
void doStuff()
{
}

void doMoreStuff()
{
}
#endif

• The code between the
#if 0 and #endif never
gets to the compiler

• From the compiler’s
perspective, it’s as if that
code doesn’t exist!

The Others

• #else is an else; #elif
stands for else-if

• They work pretty much
like you’d expect

• The entire block still
needs to end with
#endif

#if X == 1
 printf("one\n");
#elif X == 2
 printf("two\n");
#else
 printf("three\n");
#endif

a few of

... #else and #elif

#ifdef

• The #ifdef directive is like #if...

• Instead of checking a numerical value, it
checks to see if the argument is defined

#ifdef INC_DOSTUFF

void doStuff()
{
}

#endif

this checks to see if
INC_DOSTUFF was defined,
either with or without a value

for this to work, there would
need to be a
#define INC_DOSTUFF
earlier in the code

One Application...

// data.h
class data
{
 int x;
};

• We touched on this earlier
in the semester...

• It’s easy to accidentally
include the same header file
multiple times

• data.h is getting pulled into
main.cpp directly, and via
stuff.h

• What is the problem with
this?

// stuff.h
#include “data.h”

// main.cpp
#include “data.h”
#include “stuff.h”

Include Guards
• We can use the preprocessor to make sure

the same header only gets included once per
source file:

#ifndef DATA_H
#define DATA_H

class data
{
 int x;

};

#endif

#ifndef - is true if the
argument is not defined

if DATA_H is not #defined,
then it has never been
included; include it and then
#define it so it won’t be
#included again

Macros
• The other major use of the

preprocessors is to define
macros

• A macro is a #define that
can accept arguments:

#define MACRO_NAME(arg1, arg2, ...) [code to expand]

• Macros aren’t of any particular type

• They get “expanded” directly into the code

Tricksy Macros
• A simple example:

#define MULT(x, y) x * y

• We’d use the macro like this:

int z;
z = MULT(3 + 2, 4 + 2);

• What would you expect this to expand to?
What does it expand to? How do we fix this?

How ‘bout this one?
• Another simple macro:

#define ADD_FIVE(a) (a) + 5

• But are problems is we use it like this:

int x = ADD_FIVE(3) * 3;

• What would you expect this to expand to?
What does it expand to? How do we fix this?

One more...

• There’s a weird trick you can do, using the
bitwise exclusive-or to swap two variables

• Here’s a macro to implement that:

#define SWAP(a, b) a ^= b; b ^= a; a ^= b;

• Sometimes this works fine:

int a = 5, b = 10;
SWAP(a, b);

• When would this
not work fine? How
would we fix it?

Why Macros Suck

• By now you may have realized why people
hate using macros:

• They’re picky

• They often have unintended consequences

• They aren’t typesafe

• Macros were used a lot in C - what
is often used instead in C++?

Multiline Macros
• In C/C++, a backslash at the end of the line

means “extend this line onto the next line”

• We can use this to make macros easier to
read and write

• For instance, we could rewrite the swap
macro to look like this:

#define SWAP(a, b) { \
 a ^= b; \
 b ^= a; \
 a ^= b; \
 }

