
Cthe basics of

class data
{
 public:
 data();
 private:
 float foo;
 bool isOrd;
 float quux;
}

data::data()
{
 foo = 5;
 isOrd = true;
 quux = -23.34;
}

what’s another way of writing
this constructor?

int*** ptr;

What is this thing?

What’s it pointing to?

What are the different
values we could mess
with here?

Fruit Veggie

FoodItem

?

Tomato

Nobody seems to be able
to agree whether
Tomato should be
derived from Fruit or
from Veggie.

How could we solve this
dilemma and make
everybody happy?

What would be the
problems with doing this,
and how might we
address those?

#include “openfile.h”

try
{
 ifstream inFile;
 char* data = new char[500];
 openFile(inFile);
 inFile.getline(data, 500);
 delete[] data;
}
catch(...)
{
 cout << “whoops.” << endl;
}

is this snippet:

a. good?
b. not good?

why might it be not
good?

All About C
• Why does this matter?

• Lots of C++ code is actually C code in
disguise!

• Everything you can do in C, you can do in C+
+.

• And vice versa: everything you can do in C++,
you can do in C.

• ... but sometimes it’s harder

The Basics

• Designed mainly for efficiency
and portability

• Less concerned about
programmer niceties:

• Less type-safe, for example

• Less “behind the scenes” stuff

C Files
• C files usually have a .c extension (as

opposed to .cpp)

• Sometimes this is important - the extension
tells the compiler how to deal with a file

• Like C++, header files have a .h extension

• In C++, standard header files usually have no
extension - #include <iostream>

• In C, even the standard header files have .h
extensions - #include <stdio.h>

Struct Variables

• In C++, once you’ve declared
as structure, you can
instantiate it with only the
structure name:

struct aPoint
{
 int x, y;
};

aPoint a;

• In C, the full typename is
struct aPoint - aPoint alone
is not enough

struct aPoint a;
struct aPoint* pt;

Declarations
• C++ lets you declare variables anywhere you

want in the code

• In C, declaration statements must be the first
statements in a block (like a function)

doStuff();

for(int i = 0; i < 10; ++i)
{
} int i;

doStuff();
for(i = 0; i < 10; ++i)
{
}

bad

good

Type Casting

• C and C++ both support this form of typecasting:

int bob = (int)3.14159;

• C++ also gives you constructor-style casting:

int bob = int(3.14159);

• This does not work in C.

• Implicit conversions are largely the same

Comments

// this is a comment
doStuff();

C++ allows single line comments...

/* this is a comment,
 and it can go on for
 quite a while */
doStuff();

C only allows comments delimited by
/* and */, which can be multi-line

Function Stuff

• C has no function overloading

• What does this mean?

• How would you work around this?

• Also: no default arguments for functions

• What does this mean?

Operator Overloading

• In C, there is no operator overloading

• This usually isn’t that big of a deal, though...

• What is operator overloading, exactly?

• How would you implement something
equivalent?

References
• Reference types (int& a, etc.) are new to C++,

and didn’t exist in C.

• Why does this not matter much?

void swap(int& x, int& y)
{
 int temp;
 temp = x;
 x = y;
 y = temp;
}

How do we
rewrite this
code without
using references?

iostreams

• In C, there are no iostreams

• no ifstream, ofstream, cin, cout...

• Instead, there are the functions declared in
<stdio.h>

• There are several different I/O functions but
we’re going to focus on just a few of them

printf

• printf is how you print stuff to the screen

• printf can handle a variable number of arguments

• The first argument to printf is the format string

• The format string tells printf the type of all the
forthcoming arguments, and sometimes the
formatting

• ... or it can just contain regular text

printf(format, arg, arg, arg ...)

Format String
• The format string can contain regular text,

complete with escape sequences

printf(“my name is bob\n”);

printf(“%i\n”, 42);

• The types are specified via codes called type
specifiers, which start with the % character

• The character that follows the % sign tells printf
what the type the argument is going to be

• Some common type specifers:

• %i or %d = integer

• %u = unsigned integer

• %s = string (character array, NULL terminated)

• %f = floating point

• %c = character

printf(“%s’s favorite number is %d!\n”,
 person->name, person->favNum);

More Format Strings
• The type specifier can sometimes contain

formatting information:

printf(“[%d]\n”, 17);
[17]

printf(“[%5d]\n”, 17);
[17]

printf(“[%05d]\n”, 17);
[00017]

• There are a bunch of these, depending on the
type specifier - look ‘em up if you’re curious

More I/O
• There are specialized version of

the printf function:

• sprintf - prints the output into
a string

• fprintf - prints the output to a
file

• Also input functions:

• The scanf family - gets output
from something - a file, a
string, the keyboard

void pointers
• So far, every time we’ve talked about

pointers, the pointer has a type

• int pointers point to ints, etc.

• C has many functions (mainly I/O and
memory functions) that deal with chunks of
data of unknown type

• When a function needs a pointer to data
that could be any type, it uses a void*
(a void pointer)

Example:

• The fwrite function writes a block of bytes
out to a file, without regard to what kind of
data its writing

• Any kind of data can be turned into a void*, so
we can call fwrite with any kind of data

int fwrite(const void* buffer, int size,
 int count, FILE* stream);

Dynamic Memory Allocation

• C has no new/delete operators

• Instead, dynamic memory allocation is handled by
a function named malloc, which takes the
number of bytes needed as a parameter

• malloc returns a void*, which then needs to be
cast to the correct type

char* str = (char*)malloc(50);

allocate a character array for how many characters?

Freeing Dynamically
Allocated Memory

• In C++, for every new, there has to be a delete
or we get memory leaks

• In C++, for every malloc, there has to be a free

• free is a function called on a pointer to the
allocated memory (just like delete):

char* str = (char*)malloc(50);
...
free(str);

• In C++, we can request a certain number of a certain
type:

Cow* array = new Cow[10];

• ... and the compiler figures out exactly how many
bytes of memory are needed

• In C, we need to know how many bytes we need
before calling malloc!

• So we have to be able to figure out exactly how
many bytes a Cow structure takes up in memory

Dynamic Memory Allocation

Introducing: sizeof
• sizeof is a C/C++ operator that returns

the number of bytes something takes

• We can call sizeof with a type:

printf(“%d\n”, sizeof(int));

• or we can call it with an instance of a type:

int bob = 196;
printf(“%d\n”, sizeof(bob));

• How would we allocate an array of 10 cows?

