THOSE WHO
THROW OBJECTS
AT THE CROCODILES
WILL BE ASKED TO

RETRIEVE THEM

|OSTREAMS

Review

What does dynamic_cast let you do!

Why is it sometimes preferable to C-style
casting!

How do you throw an exception!?

How do you catch an exception?

Once an exception is caught, where does

execution pick back up?)

The Basics

® |/O is a big part of nearly every program

® We've been doing simple I/O for most of the
semester, using €in and cout

® cin and cout are just two examples of a
more general C++ feature called
ilostreams

Streams

%ﬁ_\\
® A stream is a C++ object that formatsﬁ

holds bytes of data

® There can be input streams (an istream)

or an output stream (an ostream)

® Cin is an istream, cout is an ostream; these
give you access to stdin and stdout

® Streams don’t only do |/O: they also buffer
the data to make /O more efficient

lostream properties

® Streams are designed to be source independent:
a stream should be used the same way
regardless of where the data is coming or going

® The same interface can work on:

keyboard/screen I/O (cout/cin)

file I/O
network I/O
a string

® Thanks to the magic of...?

® We've been doing stuff like this all semester:

int input;

cin >> 1input;
cout << “this 1s some output” << endl;

® |et’s look at what this stuff actually is:
® >> s an extraction operator
® << is an insertion operator
® endl is a manipulator

® cout is an ostream; c€in is an istream

Manipulators

® A manipulator is an object that acts on the
stream itself

® endl is an example: when we try and
“print” an endl:

® it inserts a newline into the stream
® it flushes the stream

® There’s a bunch of other manipulators that
we can use too

More Manipulators

® We can just flush the stream, without printing a
newline first:

cout << flush;

® We can change the number base to oct (octal) or
dec (decimal) or hex (hexadecimal) to any
subsequent integers will be output in that base:

cout << hex << “0x" << 1 << endl;

int 1i;
cin >> 1i;

float £;
cin >> f;

char c;
cin >> c;

char buf[100];
cin >> buf;

What does this code
do with this input?

Input

Input tends to be fragile

Users have to input the right
data types, in the right order

If the input isn’t what the
program expects, it can
choke

This is true with iostreams
too:

12 1.4 ¢ this is a test

The Problem

By default, istreams are space delimited (as
you may have seen in some of the projects)

So when we attempt to do something like
this:

char buf[100];
cin >> buf;

with the input “this is a test”, buf will contain
the word “this”

The rest of the input stays buffered

reading in a whole line

® Often you'll need to read in entire lines
(until there’s a newline character in the
input stream)

® You do this using the getline member
function:

char buf[100];
cin.getline(buf, 100);

Note that we
have to give cin a
size, too! (why?)

Getting a character

Another way to do things:

Sometimes you want to get input character
by character (including the whitespace!)

You can do that with another cin member
function:

get() reads the next single character from the
stream (or EOF if the stream is at its end)

Streams VVeirdness

® |nput streaming doesn’t always work the way
you think it does

® How does this chunk of code act?

char answer;

cout << "Exit Program? [Y/N] ";
cin >> answer;

cout << "Press Enter\n";
cin.get();

Discarding Input

® One solution: get rid of stuff in the stream
buffer that we aren’t going to want to deal
with

® We can do this with the ignore() function:

cin.ignore(); // ignores a single character
cin.ignore(3); // ignores 3 characters

// ignores 10 characters, or the “stop character”
// whichever comes first
cin.ignore (10, ‘\n’);

File I/O

So far we’ve used iostreams solely for
console input/output

A more important use is for file I/O

This works largely the same way, although
there’s a bit more work required

For file /O, we must #include<fstream?>

Starting Out

® To begin with, we create an object of the
appropriate type: ifstream defaults to
input, ofstream defaults to output

® We create the object and call good() on it to
make sure it got instantiated properly:

ofstream output(“c:\\test.txt”);
if(!output.good())
return;

® At this point the object can be used much like
cout or cin

Open Modes

® We can control the way a file is
opened by changing an argument to
the ifstream/ofstream constructor:

a fi

e for input

a fi

e for output (truncation)

a fi

e for appending

an existing file and seek to the end

.:nocreate

a fi

e only if it does exist

::noreplace

a fi

e only if it does not exist

.:trunc

a fi

e and delete the old one if it exists

::binary

O |O|O|O|O|O|O |O

a fi

e in binary mode (default is text)

Multiple Modes

® We can combine these flags by OR-ing them
together with the bitwise OR operator: |

ofstream outFile(“out.txt”, ios::app | ios::nocreate);

® This opens “out.txt” for appending, and fails if
the file doesn’t already exist

® The | operator combines the different flags
together - this is pretty common

..oeeking

® Each ofstream or ifstream has a read
position and a write position - we seek
through the file by changing these, so the
object reads from/writes to a different spot

® We do this with the seekg (changes the get
pointer) and seekp (changes the put
pointer) member functions

® They let us seek relative to a position: the
beginning, current position, or the end

Seeking Example

® We tell the seek function to seek x number of
bytes relative to the beginning (ios::beg), current
position(ios::cur), or end (ios::end) of the file

ifstream in(“test.txt”);
char c;

if(!in.good())
return;

// seek 50 bytes from the beginning of the file
in.seekg(50, ios::beg);
in >> c;

Error Handling

® We can find out whether an iostream object is OK
using a few member functions:

® eof() returns true if the end of the file (or input)
has been reached

® fail() returns true if some operation has failed -
formatting issues, for example

® bad() turns true if something serious went wrong
- running out of memory, for example

® good() returns true if none of that stuff
happened and everything is groovy

Error Handling 2

® Jo ‘“reset’ the error status of an iostream
object, you can use the clear() function

® We might do this if we want to keep using
the object - aka “rewind” a file and read
some more from it

® clear() only resets the error status - it
doesn’t do anything with the buffer

Insertion/Extraction

® jostreams are a library, not built into the language

® So << and >> don’t have any special /O meaning
to the compiler - these are all overloaded!

® So for every data type that can appear on the
right side of a >>, there’s an overloaded
operator>> function somewhere

int input; This works because istream
cin >> input; €=t""" defines an operator>> that
accepts an integer as a
parameter

Insertion/Extraction

® So far we haven’t learned any way to make
the following code work

® The << operator is not defined for MyClass
and ostreams, so this is a compiler error

class MyClass

{
// stuff is declared here

}i

MyClass m;
cout << m << endl;

® We can make it work providing that definition

Operator Overloading

® When we're overloading << and >> for our
classes, these overloaded operators can’t be
defined as member functions!

They still need access to private class data,
though, so they’re usually defined as global
functions, and declared as friends

Once we've overloaded << and >> for a
custom class, we can use that class with
iostreams such as cin/cout

class TwoInts

{
public:

TwoInts ()
{ one = two = 17; }

friend ostream& operator<<(ostreamé&, TwoInts&);
friend istream& operator>>(istreamé&, TwolInts&);

private:
int one, two;

ostream& operator<<(ostream& out, TwoInts& ti)

out << ti.one << ti.two;
return out;

ostream& operator>>(istreamé& in, TwoInts& ti)

in >> ti.one;
in >> ti.two;
return in;

