
iostreams

Review

• What does dynamic_cast let you do?
Why is it sometimes preferable to C-style
casting?

• How do you throw an exception?

• How do you catch an exception?

• Once an exception is caught, where does
execution pick back up?

The Basics

• I/O is a big part of nearly every program

• We’ve been doing simple I/O for most of the
semester, using cin and cout

• cin and cout are just two examples of a
more general C++ feature called
iostreams

Streams

• A stream is a C++ object that formats and
holds bytes of data

• There can be input streams (an istream)
or an output stream (an ostream)

• cin is an istream, cout is an ostream; these
give you access to stdin and stdout

• Streams don’t only do I/O: they also buffer
the data to make I/O more efficient

iostream properties
• Streams are designed to be source independent:

a stream should be used the same way
regardless of where the data is coming or going

• The same interface can work on:

• keyboard/screen I/O (cout/cin)
• file I/O
• network I/O
• a string

• Thanks to the magic of... ?

• We’ve been doing stuff like this all semester:

int input;

cin >> input;
cout << “this is some output” << endl;

• Let’s look at what this stuff actually is:

• >> is an extraction operator

• << is an insertion operator

• endl is a manipulator

• cout is an ostream; cin is an istream

Manipulators
• A manipulator is an object that acts on the

stream itself

• endl is an example: when we try and
“print” an endl:

• it inserts a newline into the stream

• it flushes the stream

• There’s a bunch of other manipulators that
we can use too

More Manipulators

• We can just flush the stream, without printing a
newline first:

• We can change the number base to oct (octal) or
dec (decimal) or hex (hexadecimal) to any
subsequent integers will be output in that base:

cout << flush;

cout << hex << “0x” << i << endl;

Input
• Input tends to be fragile

• Users have to input the right
data types, in the right order

• If the input isn’t what the
program expects, it can
choke

• This is true with iostreams
too:

int i;
cin >> i;

float f;
cin >> f;

char c;
cin >> c;

char buf[100];
cin >> buf;

12 1.4 c this is a test
What does this code
do with this input?

The Problem
• By default, istreams are space delimited (as

you may have seen in some of the projects)

• So when we attempt to do something like
this:

char buf[100];
cin >> buf;

• with the input “this is a test”, buf will contain
the word “this”

• The rest of the input stays buffered

reading in a whole line

• Often you’ll need to read in entire lines
(until there’s a newline character in the
input stream)

• You do this using the getline member
function:

char buf[100];
cin.getline(buf, 100);

Note that we
have to give cin a
size, too! (why?)

Getting a character
• Another way to do things:

• Sometimes you want to get input character
by character (including the whitespace!)

• You can do that with another cin member
function:

cin.get();

• get() reads the next single character from the
stream (or EOF if the stream is at its end)

Streams Weirdness

• Input streaming doesn’t always work the way
you think it does

• How does this chunk of code act?

char answer;
cout << "Exit Program? [Y/N] ";
cin >> answer;
cout << "Press Enter\n";
cin.get();

Discarding Input

• One solution: get rid of stuff in the stream
buffer that we aren’t going to want to deal
with

• We can do this with the ignore() function:

cin.ignore(); // ignores a single character
cin.ignore(3); // ignores 3 characters

// ignores 10 characters, or the “stop character”,
// whichever comes first
cin.ignore(10, ‘\n’);

File I/O

• So far we’ve used iostreams solely for
console input/output

• A more important use is for file I/O

• This works largely the same way, although
there’s a bit more work required

• For file I/O, we must #include<fstream>

Starting Out
• To begin with, we create an object of the

appropriate type: ifstream defaults to
input, ofstream defaults to output

• We create the object and call good() on it to
make sure it got instantiated properly:

ofstream output(“c:\\test.txt”);
if(!output.good())
 return;

• At this point the object can be used much like
cout or cin

Open Modes
• We can control the way a file is

opened by changing an argument to
the ifstream/ofstream constructor:

ios::in open a file for input

ios::out open a file for output (truncation)

ios::app open a file for appending

ios::ate open an existing file and seek to the end

ios::nocreate open a file only if it does exist

ios::noreplace open a file only if it does not exist

ios::trunc open a file and delete the old one if it exists

ios::binary open a file in binary mode (default is text)

Multiple Modes

• We can combine these flags by OR-ing them
together with the bitwise OR operator: |

ofstream outFile(“out.txt”, ios::app | ios::nocreate);

• This opens “out.txt” for appending, and fails if
the file doesn’t already exist

• The | operator combines the different flags
together - this is pretty common

...Seeking
• Each ofstream or ifstream has a read

position and a write position - we seek
through the file by changing these, so the
object reads from/writes to a different spot

• We do this with the seekg (changes the get
pointer) and seekp (changes the put
pointer) member functions

• They let us seek relative to a position: the
beginning, current position, or the end

Seeking Example
• We tell the seek function to seek x number of

bytes relative to the beginning (ios::beg), current
position(ios::cur), or end (ios::end) of the file

ifstream in(“test.txt”);
char c;

if(!in.good())
 return;

// seek 50 bytes from the beginning of the file
in.seekg(50, ios::beg);
in >> c;

Error Handling
• We can find out whether an iostream object is OK

using a few member functions:

• eof() returns true if the end of the file (or input)
has been reached

• fail() returns true if some operation has failed -
formatting issues, for example

• bad() turns true if something serious went wrong
- running out of memory, for example

• good() returns true if none of that stuff
happened and everything is groovy

Error Handling 2

• To “reset” the error status of an iostream
object, you can use the clear() function

• We might do this if we want to keep using
the object - aka “rewind” a file and read
some more from it

• clear() only resets the error status - it
doesn’t do anything with the buffer

Insertion/Extraction
• iostreams are a library, not built into the language

• So << and >> don’t have any special I/O meaning
to the compiler - these are all overloaded!

• So for every data type that can appear on the
right side of a >>, there’s an overloaded
operator>> function somewhere

int input;
cin >> input;

This works because istream
defines an operator>> that
accepts an integer as a
parameter

Insertion/Extraction
• So far we haven’t learned any way to make

the following code work

• The << operator is not defined for MyClass
and ostreams, so this is a compiler error

class MyClass
{
 // stuff is declared here
};

MyClass m;
cout << m << endl;

• We can make it work providing that definition

Operator Overloading

• When we’re overloading << and >> for our
classes, these overloaded operators can’t be
defined as member functions!

• They still need access to private class data,
though, so they’re usually defined as global
functions, and declared as friends

• Once we’ve overloaded << and >> for a
custom class, we can use that class with
iostreams such as cin/cout

class TwoInts
{
 public:
 TwoInts()
 { one = two = 17; }

 friend ostream& operator<<(ostream&, TwoInts&);
 friend istream& operator>>(istream&, TwoInts&);

 private:
 int one, two;
};

ostream& operator<<(ostream& out, TwoInts& ti)
{
 out << ti.one << ti.two;
 return out;
}

ostream& operator>>(istream& in, TwoInts& ti)
{
 in >> ti.one;
 in >> ti.two;
 return in;
}

