ENERGENCY
|

b,

174 KM AHEAD

Lecture 2

(variables, conditional expressions)

Variables and Memory

® Each variable;
has a name (identifier)

nas a type (bound at compile-time)

nas its own location in memory (address)
takes up a certain number of bytes

...ahd of course has a value

Variable Names

® Rules for variable names in C++:
® Can contain letters, numbers, or underscores
® Must begin with a letter or an underscore

® Usually a length limit (compiler dependent) but
long enough to not matter

® Can’t be a reserved word

® (C++ is case sensitive

® varName !=VARNAME !=VarName != varname

Which variable names are valid?

int 8pmDinner;

char test-case;

int this is a really long variable name;
float isThisValid;

double wake upj;

char Sbob;

double return;

C++ Reserved Words

asm
auto

bool

break
case
catch

char

class
const
const_cast
continue
default
delete

do

double

dynamic_cast
else
enum
explicit
export
extern
false
float

for

friend
goto

if

inline

int

long
mutable
namespace
new
operator
private
protected

public unsigned
reqgister using
reinterpret_cast virtual
return void
short volatile
signed wchar_t
sizeof while
static

static_cast

struct

switch

template

this

throw

true

try

typedef

typeid

typename

union

Basic Data lypes

The types you might care about:

® int-124,3,-100
o float - [2.4,45.68,-34.22
e char -'2,'b,'$’,'%’,128, 7,254

® bool - true, false

Except for bool, any of these can be signed or unsigned.

Variable Types (32-bit)

char

character, small integer

| bytes

signed: -128 to 127
unsigned: 0 to 255

short

short integer

2 bytes

signed: -32768 to 32767
unsigned: 0 to 65535

int / long

integer

4 bytes

signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295

bool

boolean value

4 bytes

true or false

float

floating point value

4 bytes

3.4e +/- 38 (7 digits)

double

double precision floating
point value

8 bytes

1.7e +/- 308 (15 digits)

wchar t

wide character

2 bytes

1 wide character

Declaring Variables

® All variables must be declared semicolon

before they can be used. every statement
ends with one

® Declarations allocate memory for

that variable.
int result =

an

type (implies size) name (identifier) initial value
required required optional

Declaring Variables

Variables can be declared one per line:

int type;

int score = 3;

int aliensKilled;
bool awesome = true;

Or, variables of the same type can be declared
on the same line:

int type, score = 3, aliensKilled;
bool awesome = true;

Variable Initialization

® Variable initializations are optional...

® What happens if a variable is not initialized with a
value!?

int result = initial value is 25

int result; initial value is 22?

Variable Initialization

Answer: initial value ends being whatever was in
that chunk of memory beforehand

Probably a garbage value

C++ compilers do not pre-initialize variables!

Rule of thumb: always initialize variables

int result = -19358221;

Assigning stuff to variables

® Using the = operator (akai = 25.3;)
® We can assign numeric literals:

® int types: 3,0,-42, 167, not 1,345,293

® float types: 2.0,-0.33365, 3.0e5

® bool: true or false

® .. or an expression of some sort

Arithmetic Operators

® Assignment (=),asina = 4;

Addition (+)

Subtraction (-)
Multiplication (*)
Division (/)

® Modulo (%)

® this only works for integers

® 5%3=12

a quick note about...

Integer Division

® The result of an integer divide is an integer -
the remainder is discarded

e 5/3=1
® what about 3/ 5?

® Division by zero causes a runtime error

More Operators!!!!

As a shortcut for this:
aliensKilled = aliensKilled + 10;

You can do this:
aliensKilled += 10;

Operators of this style:
+=

*
/
s

Stuff like this happens a lot:
numberOfLives = numberOfLives + 1;

You can do this instead:
numberOfLives++; (post-increment)
or
++numberOfLives; (pre-increment)

In the above case, the two are equivalent - but
they’re not always.

Any idea what the difference is!?

Pre-Increment vs vv(

Post Increment TR

s

® Pre-increment:

® first increments the value, then returns it
® Post-increment:

® first returns the value, then increments it

® this involves making a copy of the original
value, which is in theory less efficient

® doesn’t matter all that much for built-in types

Pre—increment vs Post—increment

post-increment:

#include <iostream>
usling namespace std;

int main()

{
int a = 10;
cout << a++ << endl;
return EXIT SUCCESS;

pre-increment:

#include <iostream>
using namespace std;

int main()

{
int a = 10;
cout << ++a << endl;
return EXIT SUCCESS;

There are similar operators for decrementing:
aka var-- and —--var

Examples

// doesn’t change the
// value of foo

Conditional Execution

Most programs don’t unconditionally
compute things straight through

Often we need to decide whether to
execute a chunk of code, based on some
condition

Enter conditional statements!

Example

This code chunk
reads in two
numbers, and
prints out the

bigger one.

Note that
{ and } are used
to group blocks
of statements.

a code snippet...

int numl, num2;

// get two numbers from the user
cin >> numl;
cin >> num2;

// compare the numbers

if(numl > num2)

{
// this gets executed if the above
// condition is true
cout << numl;

}

else

{
// and this gets executed if not

cout << num2;

}

Comparison Operators (

® Equality: == if(a == Db)
Not Equal; != if(a !=Db)
Greater: > if(a>b)
Less: < if(a <b)
Greater or Equal: >= if(a > b)

Less or Equal: <= if(a<=b)

Boolean Logic:

combining comparisons

And operator: &&
Or operator: | |
Not operator: !

Examples:
o if((x > 0) && (x < 12))
e if((x 32 ==0) || (x < 2)
® if((x < 3) && !(x < 0))

Boolean Logic

ltrue == false
lfalse == true

(true && true) == true

(true && false) == false
(false && true) == false <«<—
(false && false) == false

both must
be true

(true || true) == true
(true || false)
(false \ true) == true <«—— either can

be true

(false || false) == false

Operator Precedence

() left to right
++X; --X left to right

X++; X--; +X; -X right to left
eft to right

eft to right

eft to right
eft to right

eft to right

eft to right

eft to right

right to left

a few quick

Examples

int foo = 5;
foo++ * 3 / 2 + 1
foo *= 2%*2

foo * 3 % 4 / 2

® Tip:just use parenthesis to make your meaning clear

... back to 1 £ statements

® if the condition is true,an 1f statement executes the
following single statement or block of statements

® A statement is any valid expression followed by a
semicolon

® A block of statements is anything contained within a
set of { } brackets

1f(milkSmellsOK)

{ 1f(milkSmellsOK)
drinkMilk(); drinkMilk();

}

else statements

® an else statement is optional; it is executed if the
matching 1£ statement is not true

® same rules apply; the statement or block immediately
following the else is what gets executed

if(jokeIsFunny)
humor += 10;

else

{

throwTomatoes () ;
humor -= 10;

fun with 1T and else

® you can pile together multiple if/else statements
to produce a chain of conditions

1f(scrubsIsOn)
watchScrubs () ;

else i1f(theOfficeIsOn)
watchTheOffice();

else i1f(1isNiceDay)
goOutside();

else
doHomework () ;

nested 1T statements

if/else statements can be nested in practically any pattern
to produce complicated conditional execution

i1f(tornadoSirenIsSounding)

{
if(!(isFirstMondayOfMonth && 1s9AM))

{
i1f(houseHasBasement)
hideInBasement();
else
runAway () ;

whimper () ;

But be ye careful!

1f(value == true)
doThis();
doThat () ;
playCheckers();

playFetch(); what does this really do?

hOYV bout if(selfDestructInitiated);
this one! blowUpShip();

Sample Program

® Formula to convert Celsius to Fahrenheit:
o F=C*|.8+ 32
® Write a program that:
® Accepts Celsius temperature as input
® Converts it to Fahrenheit and displays result

® (Classifies the result as too cold, too hot, or
just right

