DYNAMIC

CASTING,
tRROK
HANDLING,
EXCEPTIONS

Review

void swap(int& a, int& b) class ReadOnly

{ {
int temp = aj; public:
a = b; Data(int v)
b = temp; {

val = v;

}
int getVal()

{

® How do we turn these
code bits into a template 3}
function/class? private:

int v;

return val;

STL review

® Write a simple program that uses the STL
vector class:

® Adds some random integers

® Sorts them

e sort(iterator, iterator);

® Prints them all out using iterators

Pointer Problem

® Let’s say we have an Animal*.

® We want a Shark™, where Shark is a class
derived from Animal*.

® rampage() is a method defined only in Shark.

® Will this work?

Animal* a = (some random Animal ptr)
Shark* s = (Shark*)a;
Shark->rampage () ;

Fish/Shark/Boom

® Yes - but this will only work if the pointer
is actually a Shark!

® This will cause Very Bad Things to happen:

Animal* a = new Fish();
Shark* s = (Shark*)a;
s—->rampage() ;

® ais hot a Shark, so there is no rampage
method in a! ... Boom.

Casting and Type Errors

® This is a type error : we're trying to turn a
pointer into something it’s not

® The C casting operator lets you do this,
which is why its use is not encouraged with
classes

® |nstead, we have something new: the
dynamic_cast operator thingy

Introducing:
dynamic_cast

® dynamic_cast attempts to convert the

parameter (a) into the requested type
(Shark*)

® |[f successful it returns a valid pointer

® If not, it returns NULL!

Animal* a = new Fish();
Shark* s = dynamic cast<Shark*>(a);
1f(s)

s—=>rampage() ;

Asserts

® C/C++ includes a function called assert(),
which is widely used in debugging

® assert is called with a condition: we want
the condition to be true

® |[f the condition is true, assert() does nothing; if
the condition is false, assert() prints a message
and ends the program

Here’s an example:

We want to make sure a pointer is not NULL

While debugging, we use assert; if the pointer
is NULL when assert is called, the program
will terminate with a helpful message

very helpful, but for “real” programs you often

want better debugging can this!

// get the first node in the list
Node* ptr = list.getFirstNode();

// this should always return a valid ptr
assert(ptr != NULL);

Error Handling

® With simple programs, we assume
everything is going to work... but programs
sometimes have errors!

Example:

deleteFile(“c:\\temp.txt”);

® the file might not exist
® |t might not be delete-able

® something else might go wrong

Return Codes

® By convention, C functions use return values to
indicate success/failure (sometimes known as
return codes)

® This can be a pain, because you may have to
sometimes check for multiple different errors

every time you call a function

int returnval deleteFile(“c:\\temp.txt”);

if(returnval == ERR FILE DOES NOT EXIST)
cout << “File Does Not Exist”;

else if(returnvVal == ERR FILE NOT WRITEABLE)
cout << “File not writable!”;

// ... etc.

Introducing C++
Exceptions

So... we can’t ignore error checking and just
assume everything is going to work

But error-checking every single function is a
pain

C++ introduced an alternative
mechanism, called exceptions

Exceptions

® Basic idea: you try to do something in C++,
specifically the sorts of things that might fail

® opening a file, requesting memory, etc.

o |[f that fails, your code throws an exception: a
small object, an integer, etc.

® Your code catches that exception, and deals
with it in an exception handler

f nothing goes wrong, none of the error

nanding code gets called - the program
broceeds normally and all handlers are ignored

Exception Structure

® We arrange code that uses exceptions in
try/catch blocks:

try
{

// Do something that could cause an error
// throw an exception on error

}

catch(exception)
{
// handle the error: print a

// message, quit the program...
// whatever.

Throwing Exceptions

® Jo throw an
exception, you simply That Mr. T is
use the throw helluva tough!

keyword:

You gonna get
throwed, suckal

throw 42;

or...

throw MadCow(“moo!!");

Try/Catch Blocks

® Every try block requires at least one catch
(there can be more than one).

® Fach catch block needs to accept a single
parameter of a specific type:

® The appropriate catch(int e)
exception handler will | 1
get called, depending | ;

on what kind of catch(MadCow e)
: {
excePtlon 8et5 cout << “MOO!" << e.moo();

thrown }

cout << “INT:"” << e;

Catch-all Block

We can also define a catch-all exception handler:

this will get called if none of the other exception
handlers “match”

There’s no parameter to the catch-all! (why not?)

catch(int e) {}
catch(MadCow e) {}

catch(...) // catchall handler
{

cout << “default!” << endl;

}

int main()
{
cout << "1";
try
{
cout << "2";
throw 42;
cout << "3";:

}
catch(...)

{
cout << "BOOM!";

}

cout << "4";

return 0O;

Code Flow

® After an exception is
thrown and caught,
execution picks up again

dfter the exception
handler!

It does not start again
after the throw
statement

What is the output of
this program?

Nesting Exceptions

® You can have multiple levels of try/catch blocks
(much like if/else statements)

® |f an exception is thrown:

® The first matching exception handler in the current

evel is called
f there isn’t one, higher levels are tried

f no matching handler is found at any level, the
Drogram terminates

® This is also what happens if you throw outside a
try/catch block!

cout << "1":
try
{
cout << "2":
try
{
cout << "3";
throw 42.3f;
cout << "4";

}

catch(int a)

{

cout << "boom one;

}

cout << "5":

}
catch(float f)

{

cout << "boom two;

}

cout << "6";

Example

® What is the output of this

impressively dense chunk
of code!

Remember: after an
exception has been

handled, the next code to
be executed is the code
after the handler

What Do We Throw?

® Most any type (object, built-in, etc) can be thrown

e Often there will be a special exception class:

® C++ has a standard base class for exceptions
called exception that can be used as a base class

class myexception: public exception

{

virtual const char* what() const

{

return "My exception happened";

}
}

Putting This Into Context

® Earlier we used the (fictional) deleteFile
function as an example:

int returnval deleteFile(“c:\\temp.txt”);

if(returnvVal == ERR FILE DOES NOT EXIST)
cout << “File Does Not Exist”;

else if(returnval == ERR FILE NOT WRITEABLE)
cout << “File not writable!”;

// ... etc.

® |f we rewrite this to use exceptions, we can
make the code cleaner to read

try

{
deleteFile(“c:\\temp.txt”);

catch(exception& e)

{

// in deleteFile cout << “Delete Error: *“
<< e.what() << endl;

if(somethingWrong)

{

FileException fs;
throw fs;

® Since we're catching a reference to an exception, we
can catch derived classes too (such as FileException)

® Also note that exceptions can be thrown by functions
(aka code outside of this function)

Exceptions Philosophy

® There’s disagreement on how
widely exceptions should be
used...

... they sometimes make it
hard to tell whether code will
be executed

Can you tell whether Two()
will be executed just by
looking!?

® Three()! Four()?

Goodly Exceptions

® When using exceptions:
® Use them for exceptional circumstances -

® don’t have your code depend on them!

® one reason: exceptions are expensive

® try to structure your code so that
exceptions are only used when needed

® helps keep things readab

