
dynamic
casting,
error

handling,
exceptions

Review

void swap(int& a, int& b)
{
 int temp = a;
 a = b;
 b = temp;
}

class ReadOnly
{
 public:
 Data(int v)
 {
 val = v;
 }
 int getVal()
 {
 return val;
 }
 private:
 int v;
};

• How do we turn these
code bits into a template
function/class?

STL review

• Write a simple program that uses the STL
vector class:

• Adds some random integers

• Sorts them

• sort(iterator, iterator);

• Prints them all out using iterators

Pointer Problem
• Let’s say we have an Animal*.

• We want a Shark*, where Shark is a class
derived from Animal*.

• rampage() is a method defined only in Shark.

• Will this work?

Animal* a = (some random Animal ptr)
Shark* s = (Shark*)a;
Shark->rampage();

Fish/Shark/Boom

• Yes - but this will only work if the pointer
is actually a Shark!

• This will cause Very Bad Things to happen:

Animal* a = new Fish();
Shark* s = (Shark*)a;
s->rampage();

• a is not a Shark, so there is no rampage
method in a! ... Boom.

Casting and Type Errors

• This is a type error : we’re trying to turn a
pointer into something it’s not

• The C casting operator lets you do this,
which is why its use is not encouraged with
classes

• Instead, we have something new: the
dynamic_cast operator thingy

Introducing:
dynamic_cast

• dynamic_cast attempts to convert the
parameter (a) into the requested type
(Shark*)

• If successful it returns a valid pointer

• If not, it returns NULL!

Animal* a = new Fish();
Shark* s = dynamic_cast<Shark*>(a);
if(s)

s->rampage();

Asserts

• C/C++ includes a function called assert(),
which is widely used in debugging

• assert is called with a condition: we want
the condition to be true

• If the condition is true, assert() does nothing; if
the condition is false, assert() prints a message
and ends the program

// get the first node in the list
Node* ptr = list.getFirstNode();

// this should always return a valid ptr
assert(ptr != NULL);

• Here’s an example:

• We want to make sure a pointer is not NULL

• While debugging, we use assert; if the pointer
is NULL when assert is called, the program
will terminate with a helpful message

• very helpful, but for “real” programs you often
want better debugging can this!

Error Handling
• With simple programs, we assume

everything is going to work... but programs
sometimes have errors!

deleteFile(“c:\\temp.txt”);

• the file might not exist

• It might not be delete-able

• something else might go wrong

Example:

Return Codes
• By convention, C functions use return values to

indicate success/failure (sometimes known as
return codes)

• This can be a pain, because you may have to
sometimes check for multiple different errors
every time you call a function

int returnVal = deleteFile(“c:\\temp.txt”);
if(returnVal == ERR_FILE_DOES_NOT_EXIST)
 cout << “File Does Not Exist”;
else if(returnVal == ERR_FILE_NOT_WRITEABLE)
 cout << “File not writable!”;
// ... etc.

Introducing C++
Exceptions

• So... we can’t ignore error checking and just
assume everything is going to work

• But error-checking every single function is a
pain

• C++ introduced an alternative
mechanism, called exceptions

Exceptions
• Basic idea: you try to do something in C++,

specifically the sorts of things that might fail

• opening a file, requesting memory, etc.

• If that fails, your code throws an exception: a
small object, an integer, etc.

• Your code catches that exception, and deals
with it in an exception handler

• If nothing goes wrong, none of the error
handing code gets called - the program
proceeds normally and all handlers are ignored

Exception Structure

try
{
 // Do something that could cause an error
 // throw an exception on error
}
catch(exception)
{
 // handle the error: print a
 // message, quit the program...
 // whatever.
}

• We arrange code that uses exceptions in
try/catch blocks:

You gonna get
throwed, sucka!

That Mr. T is
helluva tough!

• To throw an
exception, you simply
use the throw
keyword:

throw 42;

throw MadCow(“moo!!”);

or...

Throwing Exceptions

Try/Catch Blocks
• Every try block requires at least one catch

(there can be more than one).

• Each catch block needs to accept a single
parameter of a specific type:

catch(int e)
{
 cout << “INT:” << e;
}
catch(MadCow e)
{
 cout << “MOO!” << e.moo();
}

• The appropriate
exception handler will
get called, depending
on what kind of
exception gets
thrown

Catch-all Block

• We can also define a catch-all exception handler:
this will get called if none of the other exception
handlers “match”

• There’s no parameter to the catch-all! (why not?)

catch(int e) {}
catch(MadCow e) {}

catch(...) // catchall handler
{
 cout << “default!” << endl;
}

Code Flow
• After an exception is

thrown and caught,
execution picks up again
after the exception
handler!

• It does not start again
after the throw
statement

• What is the output of
this program?

int main()
{
 cout << "1";
 try
 {
 cout << "2";
 throw 42;
 cout << "3";
 }
 catch(...)
 {
 cout << "BOOM!";
 }
 cout << "4";

 return 0;
}

Nesting Exceptions
• You can have multiple levels of try/catch blocks

(much like if/else statements)

• If an exception is thrown:

• The first matching exception handler in the current
level is called

• If there isn’t one, higher levels are tried

• If no matching handler is found at any level, the
program terminates

• This is also what happens if you throw outside a
try/catch block!

cout << "1";
try
{
 cout << "2";
 try
 {
 cout << "3";
 throw 42.3f;
 cout << "4";
 }
 catch(int a)
 {
 cout << "boom one;
 }
 cout << "5";
}
catch(float f)
{
 cout << "boom two;
}
cout << "6";

• What is the output of this
impressively dense chunk
of code?

• Remember: after an
exception has been
handled, the next code to
be executed is the code
after the handler

Example

What Do We Throw?
• Most any type (object, built-in, etc) can be thrown

• Often there will be a special exception class:

• C++ has a standard base class for exceptions
called exception that can be used as a base class

class myexception: public exception
{
 virtual const char* what() const
 {
 return "My exception happened";
 }
}

Putting This Into Context
• Earlier we used the (fictional) deleteFile

function as an example:

int returnVal = deleteFile(“c:\\temp.txt”);
if(returnVal == ERR_FILE_DOES_NOT_EXIST)
 cout << “File Does Not Exist”;
else if(returnVal == ERR_FILE_NOT_WRITEABLE)
 cout << “File not writable!”;
// ... etc.

• If we rewrite this to use exceptions, we can
make the code cleaner to read

try
{
 deleteFile(“c:\\temp.txt”);
}
catch(exception& e)
{
 cout << “Delete Error: “
 << e.what() << endl;
}

• Since we’re catching a reference to an exception, we
can catch derived classes too (such as FileException)

• Also note that exceptions can be thrown by functions
(aka code outside of this function)

// in deleteFile
...
if(somethingWrong)
{
 FileException fs;
 throw fs;
}

Exceptions Philosophy
• There’s disagreement on how

widely exceptions should be
used...

• ... they sometimes make it
hard to tell whether code will
be executed

• Can you tell whether Two()
will be executed just by
looking?

• Three()? Four()?

try
{
 One();
 Two();
 Three();
 Four();
 Five();
}
catch(...)
{
 cout << “err”;
}

Goodly Exceptions
• When using exceptions:

• Use them for exceptional circumstances -

• don’t have your code depend on them!

• one reason: exceptions are expensive

• try to structure your code so that
exceptions are only used when needed

• helps keep things readable

