
Templates
&

STL

Swappety
Swap Swap

• Here we have a perfectly good swap function

• This works really well - as long as we want to
only swap integers!

void swap(int& a, int& b)
{
 int temp = a;
 a = b;
 b = temp;
}

• What if we want to swap
some floating point
values? Will this work?

float a = 5.2, b = 7.6;
swap(a, b);

Lots of Overloading
• Nope.

• To make this work
for floating point
values, we’d need to
write a whole ‘nuther
function, that does
the exact same thing!

• Only difference is the
type.

• This is kinda dumb.

void swap(int& a, int& b)
{
 int temp = a;
 a = b;
 b = temp;
}

void swap(float& a, float& b)
{
 float temp = a;
 a = b;
 b = temp;
}

void swap(Cow& a, Cow& b)
{
 Cow temp = a;
 a = b;
 b = temp;
}

sucks!

Intro to Templates
• If the function is exactly the same except

for the type, we can generalize it so it will
work for any type!

• This is done via the magical and amazing
wonder of C++ templates!

• This allows us to write a function once, and
use it for any C++ type - built in type,
class, etc.

• This is C++’s implementation of the generic
programming paradigm

A Generic Swap Function
That Doesn’t Suck

• This is the exact same
thing as the integer
version, except:

• All int’s have been
replaced with T’s

• There’s a new line
that declares this to
be a template function

template <class T>
void swap(T& a, T& b)
{
 T temp = a;
 a = b;
 b = temp;
}

• Now the compiler will
replace T with whatever
type we want! (int, float,
MooCow, etc... whatever)

Explaining Further

template <class T>
void swap(T& a, T& b)
{
 T temp = a;
 a = b;
 b = temp;
}

This says the following
(single) function is a
template function

We can also use the
typename keyword here
instead of class - the
two are equivalentT is conventional, but we

can use any name to
“rename” the type

Calling It

• Now that we’ve got this generic swap
function, we have to call it

• The function doesn’t actually exist until we tell
it what type to use

• We do that by appending <type> onto the
function name

float a = 5, b = 7;
swap<int>(a, b);

The type we want the function to swap

Types
• You’re not limited to

a single type;
template functions
can take multiple
types!

• This template
function takes two
types

• Could be anything;
we’re giving it int
and MooCow

template <class T, class U>
void swap(T& a, T& b, U& c)
{
 U randomVar = c;
 T temp = a;
 a = b;
 b = temp;
}

int main()
{
 MooCow daisy;
 int a = 5, b = 10;

 swap<int,MooCow>(a,b,c);
 return 0;
}

Template Classes
• So far today, we’ve only done

template functions

• We can template-ize entire classes
too!

• This is arguably more useful: there
are many classes that can be used
for many different types!

• Like container classes: stack, queue,
binary tree, etc.

The Int Version

• Here’s a complete
implementation of a
simple array class

• It can only use ints -
that’s all it’s written
for!

• With templates we
can make the class
generic and reusable!

class array
{
 public:
 int get(int ix);
 void set(int ix, int val);

 private:
 int data[10];
};

int array::get(int ix)
{
 return data[ix];
}

void array::set(int ix, int val)
{
 data[ix] = val;
}

template <class T>
class array
{
 public:
 T get(int ix);
 void set(int ix, T val);

 private:
 T data[10];
};

• This is the
template-ized
version - changes
highlighted in red

• This class will be
instantiated with
type T - T could
be any type!

• So all ints have
been replaced
with Ts in the
class declaration

The template line applies only to
the single thing (class or funtion)
that follows it!

Class Declaration

Class Definition
• Each member

function in the class
needs its own
template line (when
defined outside the
class)

• Also, array::get()
isn’t enough - now
we need to use
array<T>::get()

template <class T>
T array<T>::get(int ix)
{
 return data[ix];
}

template <class T>
void array<T>::set(int ix, T val)
{
 data[ix] = val;
}

(functions from the template array class)

Instantiating Template Classes

• When you call a template function, you pass
in the types as part of the function name:

swap<int>(a, b);

• When you instantiate a template class, the
types become a part of the class name!

array<float> stuff;
stuff.set(0, 3.234);

What’s... Happening?

• Each time you instantiate a template class with a
new type (or set of types), the compiler creates
an entirely different class!

array<float>

The compiler will generate a different set of code for:

... than it will for:

array<MooCow>

Non-Type Parameters

• Templates can also be
declared with non-type
parameters: just regular
types, like an integer

• In this example:

• every T will be
replaced by int

• every N will be
replaced by 17

template <class T, int N>
void func(T& a)
{
 T bob = N*2;
 a = bob;
}

int var;
func<int, 17>(var);

Default Template Values

• In this normal function, if we don’t supply a value
for the repeat function, it’s automatically set to 0.

• We can do the same sort of thing with templates:

void print(char* s, int repeat = 0)

template <class T=int, int N=23>
void func(T& a)
{
 T bob = N*2;
 a = bob;
}

int bob;
func<>(bob);

• If we don’t supply
types to func(), they
get set to int and 23

One Issue:

• Normally when we’re designing big classes,
we try and keep the definition separate from
the declaration

• Helps things compile faster!

• Easier to deal with

• Since templates are compiled “on-demand”,
the entire class has to be in the same file.

• This is usually a header file

• Coding: let’s take the simple myArray class
we made earlier, and turn it into a template
classs

Intro to the STL

• In the C language, if you wanted a data
structure, you had to write it yourself

• This was a pain

• With C++ and templates, we can create a
generic library of data structures and routines
that apply to nearly any data type

• There’s a standard one called the STL:
Standard Template Library

Stuff in the STL
• The STL contains a bunch of different data structures for

your use: vector, list, deque, set, map, hash_set, etc.

• There are also implementations of algorithms that operate
on these data structures (sorting, etc)

• The STL is very large and complicated - we’re only going to
cover some of the basics here

• STL can be hard to debug - check out the kinds of error
messages you can get!

stl_algo.h: In function `void __merge_sort_loop<_List_iterator <int,int &,int *>,
int *, int>(_List_iterator<int,int &,int *>, _List_iterator<int,int &,int *>, int
*, int)': instantiated from `__merge_sort_with_buffer <_List_iterator<int,int
&,int *>, int *, int>(_List_iterator<int,int &,int *>, _List_iterator<int,int
&,int *>, int *, int *)' instantiated from `__stable_sort_adaptive<
_List_iterator<int,int &,int *>, int *, int>(_List_iterator <int,int &,int *>,
_List_iterator<int,int &,int *>, int *, int)' instantiated from here no match for
`_List_iterator<int,int &,int *> & - _List_iterator<int,int &,int *> &'

STL Containers
• STL provides a bunch of container

types: objects that contain other objects

• For example: the STL vector class behaves
much like an array, but it handles all the
memory management for you, and can
grow itself as necessary

• vector is (duh) a template class, so you
get to tell the compiler what type the
vector holds:

vector<int> bunchOfInts;

• Here’s a simple example of the vector class in action:

#include <vector>
using namespace std;

vector<int> vec; // or std::vector
int a = 2;
int b = -5;

vec.push_back(a);
vec.push_back(9);
vec.push_back(b);

for(int i = 0; i < vec.size(); i++)
{
 cout << vec[i] << endl;
}

STL With Custom Classes

• STL containers work fine with built-in types,
but to use them with custom classes, the
class need to have these things defined:

• default constructor

• copy constructor

• assignment operator

• operator< (sometimes)

• operator== (sometimes)

find() in STL Containers
• Most STL containers support the find() function,

which lets you search for a value

• But what should find() return?

• A position/index would be OK for a vector, but
wouldn’t work so well for something like a set, which
has no inherent order!

• Instead, STL uses iterators - small C++ objects
that work like intelligent pointers

• So find() returns an iterator that points to the found
value

vector<int> vec;
vector<int>::iterator iter;

... // put stuff in the vector

for(iter = vec.begin(); iter != vec.end(); iter++)
{
 cout << *iter << endl;
}

Iterators
• Example: vector (again)

• We’re using an iterator like we would a pointer!

• This is the “standard” way to traverse through an STL
container

the iterator type for
each STL class is

declared in the class!

Using the find() function
• The find() function doesn’t deal with a

container (like a vector or a list) - it
deals entirely with iterators

vector<int> vec;
vector<int>::iterator iter;

iter = find(vec.begin(), vec.end(), 42);

starting iterator of the
range we’re searching in

ending iterator of the
range we’re searching in

value we’re searching
for - what type is this?

(In general, that is)

