TEMPLATES
&
STL

Swappety
Swap Swap

® Here we have a perfectly good swap function

® This works really well - as long as we want to
only swap integers!

® What if we want to swap
void swap(int& a, int& b) some floating point

- values? Will this work?
int temp = aj;

a = b;
b = temp; float a = 5.2, b = 7.6;
swap(a, b);

\ Lots of Overloading

void swap(int& a, int& b)

{
int temp = a;
a = b;
b = temp;

}

void swap(float& a, float& b)

{
float temp = a;

a b;
b temp;
}

void swap(Cow& a, Cow& b)

{

Cow temp = aj;
a b;
b temp;

® Nope.

® Jo make this work
for floating point
values, we'd need to
write a whole ‘nuther
function, that does
the exact same thing!

Only difference is the
type.
® This is kinda dumb.

Intro to Templates

® |f the function is exactly the same except
for the type, we can generalize it so it will
work for any type!

® This is done via the magical and amazing
wonder of C++ templates!

® This allows us to write a function once, and
use it for any C++ type - built in type,
class, etc.

® This is C++’s implementation of the generic
brogramming paradigm

A Generic Swap Function
That Doesn’t Suck

template <class T>
void swap(T& a, T& b)

{
T

a
b

}

® Now the compiler will
replace T with whatever
type we want! (int, float,
MooCow, etc... whatever)

® This is the exact same
thing as the integer
version, except:

® All int’s have been
replaced with T’s

® There’s a new line
that declares this to
be a template function

Explaining Further

template <class T> < This says the following
void swap(T& a, T& b)

‘ (single) function is a
T temp = a; template function
a = b;
b = temp;

We can also use the
typename keyword here

instead of class - the
T is conventional, but we two are equivalent
can use any name to
“rename” the type

Calling It
® Now that we've got this generic swap a é

function, we have to call it

® The function doesn’t actually exist until we tell
it what type to use

® We do that by appending <type> onto the
function name

float a = 5, b = 7;
swap<int>(a, b);

/

The type we want the function to swap

Types

template <class T, class U>
void swap(T& a, T& b, U& c)

{

randomVar = cC;
temp = aj;

= b;

= temp;

}

int main()

{

MooCow daisy;
int a = 5,

swap<int,MooCow>(a,b,c);

return 0;

b = 10;

® You're not limited to

a single type;
template functions
can take multiple
types!

This template
function takes two

types

Could be anything;
we're giving it int
and MooCow

Template Classes

® So far today, we've only done
template functions

We can template-ize entire classes
too!

This is arguably more useful: there
are many classes that can be used
for many different types!

Like container classes: stack, queue,
binary tree, etc.

class array

{
public:

int get(int ix);
void set(int ix, int val);

private:
int data[10];

}i

int array::get(int ix)

{

return data[ix];

}

void array::set(int ix, int val)

{

data[ix] = val;

}

The Int Version

® Here’s a complete
implementation of a
simple array class

It can only use ints -
that’s all it’s written
for!

With templates we
can make the class
generic and reusable!

Class Declaration

® This is the
template <class T> | - od
class array template-ize

{ version - changes
public: highlighted in red
T get(int ix);
void set(int ix, T val); This class will be
instantiated with
private:
o e 10 type T - T could

s be any type!

So all ints have
been replaced
with Ts in the
class declaration

The template line applies only to
the single thing (class or funtion)
that follows it!

Class Definition

® Fach member
;e‘;‘fiz;ig"l;:i (Tznt ix) function in the class
{ needs its own
| Tetum daralidd template line (when
defined outside the
class)

template <class T>
void array<T>::set(int ix, T val)

{

data[ix] = val; AISO’ array: :get()
} isn’t enough - now
we need to use

(functions from the template array class)
array<T>: :get()

Instantiating Template Classes

® When you call a template function, you pass
in the types as part of the function name:

swap<int>(a, b);

® When you instantiate a template class, the
types become a part of the class name!

array<float> stuff;
stuff.set(0, 3.234);

What’s... Happening?

® Fach time you instantiate a template class with a
new type (or set of types), the compiler creates
an entirely different class!

The compiler will generate a different set of code for:

E% array<float>

1

HI
s

... than it will for:

.:r'f'

array<MooCow>

Non- lype Parameters

template <class T, int N>
void func(T& a)
{

T bob = N*2;

a = bob;

int var;
func<int, 17>(var);

® Templates can also be
declared with non-type
parameters: just regular
types, like an integer

® |n this example:

® cvery T will be
replaced by int

every N will be
replaced by 17

Default Template Values

void print(char* s, int repeat

=0)

® |n this normal function, if we don’t supply a value
for the repeat function, it’s automatically set to 0.

® We can do the same sort of thing with templates:

template <class T=int, int N=23>
void func(T& a)
{
T bob =
a = bob;

N*2;

® [f we don’t supply
types to func(), they
get set to int and 23

int bob;

func<>(bob);

One Issue:

® Normally when we'’re designing big classes,
we try and keep the definition separate from
the declaration

® Helps things compile faster!
® Easier to deal with

® Since templates are compiled “on-demand”,
the entire class has to be in the same file.

® This is usually a header file

® Coding: let’s take the simple myArray class
we made earlier, and turn it into a template
classs

Intro to the STL

® |n the C language, if you wanted a data
structure, you had to write it yourself

® This was a pain

® With C++ and templates, we can create a
generic library of data structures and routines
that apply to nearly any data type

® There’s a standard one called the STL.:
Standard Template Library

Stuff in the STL

The STL contains a bunch of different data structures for
your use: vector, list, deque, set, map, hash_set, etc.

There are also implementations of algorithms that operate
on these data structures (sorting, etc)

The STL is very large and complicated - we'’re only going to

cover some of the basics here

STL can be hard to debug - check out the kinds of error
messages you can get!

stl algo.h: In function 'void _ merge sort loop< List iterator <int,int &,int *>,
int *, int>(_List jiterator<int,int &,int *>, List iterator<int,int &,int *>, int
*, int)': instantiated from ' merge sort with buffer < List iterator<int,int
&,int *>, int *, int>(_List iterator<int,int &,int *>, List iterator<int,int
&,int *>, int *, int *)' instantiated from °__ stable sort adaptive<

_List iterator<int,int &,int *>, int *, int>(_List iterator <int,int &,int *>,
_List iterator<int,int &,int *>, int *, int)' instantiated from here no match for
" _List iterator<int,int &,int *> & - List iterator<int,int &,int *> &'

STL Containers

® STL provides a bunch of container
types: objects that contain other objects

For example: the STL vector class behaves
much like an array, but it handles all the
memory management for you, and can

grow itself as necessary "
vector is (duh) a template class, so you " =
get to tell the compiler what type the '

vector holds:

8 oo

g
- *-‘

vector<int> bunchOfInts;

® Here’s a simple example of the vector class in action:

#include <vector>
using namespace std;

vector<int> vec; // or std::vector
int a = 2;
int b = -5;

vec.push back(a);
vec.push back(9);
vec.push back(b);

for(int i = 0; i < vec.size(); i++)

{

cout << vec[i] << endl;

}

STL With Custom Classes

® STL containers work fine with built-in types,
but to use them with custom classes, the
class need to have these things defined:

default constructor
copy constructor
assignment operator
operator< (sometimes)

operator== (sometimes)

find() in STL Containers

Most STL containers support the find() function,
which lets you search for a value

But what should find() return?

A position/index would be OK for a vector, but
wouldn’t work so well for something like a set, which
has no inherent order!

Instead, STL uses iterators - small C++ objects
that work like intelligent pointers

So find() returns an iterator that points to the found
value

|terators

® Example: vector (again)

the iterator type for
each STL class is
declared in the class!

vector<int> vec;
vector<int>::iterator iter;

. // put stuff in the vector

for(iter = vec.begin(); iter != vec.end(); iter++)
{

cout << *iter << endl;

}

® We're using an iterator like we would a pointer!

® This is the “standard” way to traverse through an STL
container

Using the find() function

® The find() function doesn’t deal with a
container (like a vector or a list) - i
deals entirely with iterators

vector<int> vec;
vector<int>::iterator iter;

iter = flnd(vec.begin(), vec end ()

startlng iterator of the \
range we're searching in , :
value we're searching

ending iterator of the for - what type is this?
range we're searching in (In general, that is)

