
multiple inheritance

class Car
{
 public:
 void vroom()
 {
 cout << “Car::vroom\n”;
 }
};

class Geo : public Car
{
 public:
 void vroom()
 {
 cout << “Geo::vroom\n”;

 }
};

• So far we’ve been
saying that
overrided functions
“hide” their base
class versions

• What would this
code fragment
output?

Geo prizm;
prizm.vroom();

Overrided Functions

Overrided Functions
• “Hidden” doesn’t

mean “gone”, though!

• Sometimes you might
want to call the base
class version of a
function...

• You can do that using
the scope resolution
operator (::)

class Car
{
 public:
 void vroom()
 {
 cout << “Car::vroom\n”;
 }
};

class Geo : public Car
{
 public:
 void vroom()
 {
 cout << “Geo::vroom\n”;
 base::stuff();

 }
};

Geo prizm;
prizm.vroom();

What does this print now?

Some Weird Syntax...
• You can even do this

from outside a class

• Say you want to call
the base class
version of vroom()
from the main
function:

class Car
{
 public:
 void vroom()
 {
 cout << “Car::vroom\n”;
 }
};

class Geo : public Car
{
 public:
 void vroom()
 {
 cout << “Geo::vroom\n”;

 }
};

int main()
{
 Geo prizm;
 prizm.base::vroom();
}

Question
• What if we add
another vroom()
function - a global
one?

• Could we call that
from Geo::vroom()?

void vroom()
{
 cout << “Global Vroom!!\n”;
}

class Car
{
 public:
 void vroom()
 {
 cout << “Car::vroom\n”;
 }
};

class Geo : public Car
{
 public:
 void vroom()
 {
 cout << “Geo::vroom\n”;
 Global vroom()?

 }
};

void vroom()
{
 cout << “Global Vroom!!\n”;
}

class Car
{
 public:
 void vroom()
 {
 cout << “Car::vroom\n”;
 }
};

class Geo : public Car
{
 public:
 void vroom()
 {
 cout << “Geo::vroom\n”;

 ::vroom();

 }
};

• When used on its
own, :: means “access
the global scope, not
the local scope”

• So, to call the global
vroom() function, we
use the :: operator to
call the containing
scope

Question

Multiple Inheritance
• Sometimes inheriting from

a single class isn’t enough!

• Say we’ve got the simple
class hierarchy to the left:

• What do we do when we
want to define a
TeachingAssistant
class?

• A TeachingAssistant both
teaches and attends classes

• No one base class is enough!

Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

• We have to make
TeachingAssistant
inherit from both Teacher
and Student!

• So: our new TA class will
inherit all the stuff from
both base classes!

• How would we write an
introduce method that
explains what course the
TA teaches, and what
course he/she studies?

Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

TeachingAssistant

void introduce();

• How many courseName
variables are there in
TeachingAssistant?

• How do we print out the
right version at the right
time?

Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

TeachingAssistant

void introduce();

void TA::introduce()
{
 cout << “I teach: ”;
 cout << (?)
 cout << “I study: “;
 cout << (?)
}

Multiple Inheritance

• Doing this is pretty
simple:

• Just add to the list of
classes your class
inherits from

• You may need to add
to the constructor init
list too!

class Teacher : public Person
{ // declaration mostly omitted
 public:
 Teacher(string name);
};

class Student : public Person
{ // declaration mostly omitted
 public:
 Student(string name);
};

class TA :

 public Teacher, public Student

{
 public:
 TA() :
 Student(name), Teacher(name)
 {}
};

• One problem you may have
noticed:

• How many copies of name
does TeachingAssistant have?

• Which one do we use? Does
it matter?Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

TeachingAssistant

void introduce();

void TA::introduce()
{
 cout << “My name is:”;
 cout << (?)
 cout << “I teach: ”;
 cout << (?)
 cout << “I study: “;
 cout << (?)
}

• TeachingAssistant is
derived from both
Student and Teacher

• Both Student and
Teacher inherited a
name attribute from
Person

• Therefore,
TeachingAssistant has
two copies of name!

• This might be OK but it
might not: could each
copy of name have a
different value?

Virtual
Inheritance

• The way to solve this: virtual
inheritance

• If you inherit “virtually” from a
base class, you tell the compiler:

• there must be one instance of
that base class if someone
inherits from the current class

• This is weird, and ugly, but it
solves the problem neatly

• Before we had two
copies of name in
TeachingAssistant

• Now, Teacher and Student
are inheriting virtually from
Person (red arrows)

• So there will be only one
copy of Person in any class
inherited from Teacher and
Student

• ... aka TeachingAssistant,
only has a single copy of
Person - (therefore, name)

Teacher Student

Person
string name;
void introduce();

void teachClass();
void introduce();
string courseName;

void attendClass();
void introduce();
string courseName;

TeachingAssistant

void introduce();

how this works:

Virtual
Inheritance

• To inherit virtually, just
stick the keyword
virtual right before
the public

• This has nothing to do
with virtual functions!

• Why do both Student
and Teacher use virtual
inheritance? Is this
necessary?

// declarations mostly omitted...
class Person
{
 string name;
};

class Teacher : virtual public Person
{
 public:
 Teacher(string name);
};

class Student : virtual public Person
{
 public:
 Student(string name);
};

class TA :
 public Teacher, public Student
{
 public:
 TA() :
 Student(name), Teacher(name)
 {}
};

Multiple Inheritance

• Many people disagree on the
usefulness of Multiple Inheritance

• Most newer languages don’t support MI
at all, or only a small subset of it

• If you find yourself needing to use MI
a lot, consider redesigning your
classes so you don’t!

• Not used nearly as widely as regular
inheritance

