

Overrided Functions

class Car
{
public:
void vroom()
{
cout << “Car

}

}i

class Geo : public Car

{
public:

void vroom()

{

cout << “Geo

}

: :vroom\n”;

: svroom\n”;

® So far we've been
saying that
overrided functions
“hide” their base
class versions

® What would this
code fragment
output!?

Geo prizm;
prizm.vroom() ;

N—L0
SRS N

Overrided Functions

class Car

{
public:

void vroom()

{

}
}i

class Geo

{
public:

void

{

cout << “Car::vroom\n”;

: public Car

vroom()

cout << “Geo::vroom\n”;
base::stuff();

® “Hidden” doesn’t
mean “‘gone”, though!

Sometimes you might
want to call the base
class version of a
function...

You can do that using
the scope resolution
operator (::)

What does this print now!?

Geo prizm;
prizm.vroom();

Some Weird Syntax...

class Car
{
public:
void vroom()
{
cout << “Car

}

}i

class Geo : public Car

{
public:

void vroom()

{

cout << “Geo

}

: :vroom\n”;

: svroom\n”;

You can even do this
from outside a class

Say you want to call
the base class
version of viroom()
from the main
function:

{

}

int main()

Geo prizm;
prizm.base::vroom();

void vroom()

{

cout << “Global Vroom! !\n”;

}

class Car

{
public:
void vroom()

{

cout << “Car::vroom\n”;

}
}i

class Geo : public Car

{
public:

void vroom()

{

cout << “Geo::vroom\n”;
Global vroom()?

Question

® What if we add
another vroom()
function - a global
one!

® Could we call that
from Geo::vroom()?

\{roid vroom() QUEStiOn

cout << “Global Vroom! !\n”";

}

® When used on its
class Car own, :: means ‘‘access
{ the global scope, not
the local scope”

public:
void vroom()

{
Sol ©E AERis gTireem\aT . So, to call the global

} vroom() function, we
use the :: operator to
class Geo : public Car call the containing

{ sCope€e
public:
void vroom()

{

}i

cout << “Geo::vroom\n”;

ssvroom();

Multiple Inheritance

® Sometimes inheriting from
a single class isn’t enough!

Person ® Say we've got the simple

string name; class hierarchy to the left:
void introduce();

® VWhat do we do when we
want to define a
Teacher j Student 'Il'ea::hmgAssmtant
class!?

void teachClass(); void attendClass(); ® A TeachingAssistant both

void introduce(); void introduce(); teaches and attends classes
string courseName; string courseName;

® No one base class is enough!

string name;

void introduce(); ® We have to make

TeachingAssistant
inherit from both Teacher

and Student!
Teacher

So: our new TA class will

void attendClass(); inherit all the stuff from

void introduce(); both base classes!
string courseName;

void teachClass();
void introduce();

string courseName;)
How would we write an

introduce method that
TeachingAssistant explains what course the
TA teaches, and what
void introduce(); course he/she studies?

String name; How many courseName

void introduce(); : :
variables are there in
TeachingAssistant?

How do we print out the
right version at the right

Teacher

time?
void attendClass();
void introduce();
string courseName; | void TA::introduce()

{

void teachClass();
void introduce();
string courseName;

cout << "I teach: ";

. . cout << (7?)
TeachingAssistant cout << “I study: “;

4
cout << (?)

void introduce();

Multiple Inheritance

class Teacher : public Person
{ // declaration mostly omitted
public:
Teacher(string name);

}i

class Student : public Person
{ // declaration mostly omitted
public:

Student(string name);

}i

class TA :
public Teacher, public Student

{
public:
TA()
Student (name), Teacher (name)
{}
}i

® Doing this is pretty
simple:

® Just add to the list of
classes your class
inherits from

® You may need to add
to the constructor init
list too!

One problem you may have
noticed:

string name; .
void introduce(); ® How many copies of name

does TeachingAssistant have!

Which one do we use?! Does
Teacher it matter?

: void attendClass(); i . s
void teachClass(); Coid introduce()°() IOld TA::introduce()

void introduce(); ri N
: string courseName; “ e
string courseName; & ’ cout << “My name 1s:";

cout << (?)
cout << “I teach: ";
cout << (?)
cout << “I study: “;
cout << (?)

TeachingAssistant

void introduce();

TeachingAssistant is
derived from both
Student and Teacher

Both Student and
Teacher inherited a
name attribute from
Person

Therefore,
TeachingAssistant has
two copies of name!

This might be OK but it
might not: could each
copy of name have a
different value!

Virtual
Inheritance

® The way to solve this: virtual
inheritance

® |f you inherit “virtually” from a

base class, you tell the compiler:

® there must be one instance of
that base class if someone
inherits from the current class

® This is weird, and ugly, but it
solves the problem neatly

how this works:

® Before we had two

string name; copies of name in
void introduce(); TeachingAssistant

Now, Teacher and Student
are inheriting virtually from

Teacher
Person (red arrows)

void attendClass(); So there will be only one
void introduce(); copy of Person in any class

void teachClass();
void introduce();

. . string courseName;
string courseName;

inherited from Teacher and
Student

TeachingAssistant ... aka TeachingAssistant,
only has a single copy of
void introduce(); Person - (therefore, name)

// declarations mostly omitted...
class Person
{

string name;

}i

class Teacher : virtual public Person

{
public:
Teacher(string name);

}i

class Student : virtual public Person

{
public:

Student(string name);

}i

class TA :
public Teacher, public Student
{
public:
TA() :
Student (name), Teacher (name)
{}
}i

Vir;ual
Inheritance

® To inherit virtually, just
stick the keyword
virtual right before
the public

This has nothing to do
with virtual functions!

Why do both Student
and Teacher use virtual
inheritance! Is this
necessary!

Multiple Inheritance

® Many people disagree on the
usefulness of Multiple Inheritance

® Most newer languages don’t support Ml
at all, or only a small subset of it

® |f you find yourself needing to use Ml
a lot, consider redesigning your
classes so you don't!

® Not used nearly as widely as regular
inheritance

