L=
v—ﬁ 1 YR - ',. .I' -‘lf 2 s
’ 1II| 3 .""1?-. , r'i.r_-.-:_' N :
' - > ‘
i 1 : _. | " N : -
-y h‘l LY ._ﬂ ""; "~ ! ﬁ u.
. 11 Rl -'*"ll..:-_'_ - 5 | :
L - : 1 s ‘._ ...IJ L A .. -
ﬁ*‘ " . l :.I. | ‘ s i " . |
s L Py g) = - e - & - d i
-I!F % ff"'_ L W n,-':‘_ .._ ~ Wl 2 :I
| 2 A Vo gm - ._
'. | ‘:" i m{ : rl
p - £ L] LR] ? f 50 ! : ‘-l
F

i

NMORE INHERITANCE
STUFF

Some Review

10;

® What'’s the syntax for a
switch statement?

® Rewrite this code using
the ternary operator.

® How does C++ execute
the following command?

if(testl || test2)
doStuff();

class Pet

{ Review

public:

Pet();

Questions ¢

void play();
void makeNoise(); o«
protected: ™~

string name; ® What is DOg’S b
relationship to Pet!?

private:
string owner;
}i .
What member variables/
class Dog : public Pet

{ functions of Pet are
public: inherited by Dog!?

Dog() ;
void makeNoise();

s What kind of class is

| | woofy? Are we dealing
int main() .

{ with one class or two

Pog wooty; classes?
} ,

class Pet class Dog : public Pet
{ {
public:
Pet();
~Pet(); ~Pet () ;
void play(); Dog () ;
void makeNoise(); '

protected: vEEl pLa)
serdng mema: void makeNoise();
' private:

private:
string owner;

public:
Pet();

string name;
ti _
(hidden):
class Dog : public Pet string owner;
{ }i

public:

Dog();) ,
void makeNoise(); o DOg IS A smgle class

}i:

® However, Dog has inherited a

{ lot of code from Pet!
Dog woofy;

} ® Not all of it is accessible

int main()

An alternative...

® An alternative to inheritance is called
composition (or aggregation)

® Composition is when one class contains

instances of another instead of inheriting
from it

® We use this when class Car
inheritance doesn’t make {
sense but we'd still like to Vi o
have one class be able to

. private:
use bits of another class

CarEngine e;

Some Questions

® A common mistake is to try and use
inheritance where it doesn’t make sense

nen should we use inheritance!?

nen should we use composition?

® |s one better than the other?

Object Types

Triangle tri;

® triis of type Triangle

® Ve can also say that tri is a
Shape, too!

/ ® Triangle is derived from
Shape, so everything in Shape
will also be in every instance

of Triangle

More Object Types

® Since a Triangle is of type Shape, we can refer to
it as if it were a Shape.

® This works especially well with pointers:

Shape* ptr = new Triangle;

nat type is ptr!?

nat kind of thing is ptr pointing to!

Even More Object Types

Shape* ptr = new Triangle;

® ptr is a Shape pointer. Given a pointer, we can'’t
tell exactly what kind of thing it’s pointing to!

® Only that it’s either a Shape, or something
derived from Shape

® So it could be Shape, Triangle, Rectangle, Circle,
Octrahedron... any class derived from shape!

&>, Why this is awesome:

® |t lets us treat all kinds of Shapes exactly the
same way

® No need to know what type a pointer is actually
pointing to - this is called polymorphism

'
® Can only use Shape’s interface What type does s point

to!? Triangle?
Rectangle? Circle?
void printShapeArea(Shape* s Dodecahedron!?

{ Polygon? As long as

cout << “This shape’s area is:” it is derived from Shape,
<< s->area() << endl; we don’t have to care!

For example:

® Here we're defining an array of pointer-to-
Shapes:

Shape* array[10];

® Fach element in array can be pointing to a
different kind of Shape

® They all have a common interface though, so
we can treat them all identically

An lssue

FarmAnimal
int weight;

MooCow
void chewCud();
bool hungry;

let’s talk about this...

How is cow being passed?

What type is cow!?

Whawpe does

printVWeight accept!?

r
ol
. Yo
We can transparently treat
MooCow as a FarmAnimal (this
is what polymorphism means!)

So we can pass MooCow into a
function that accepts FarmAnimal.

void printWeight(FarmAnimal animal)

{

cout << animal.weight;

}

int main()

{
MooCow cow;
printWeight(cow);

Object Slicing

For this to work, a MooCow must be converted to
a FarmAnimal

The compiler takes all the FarmAnimal bits and
leaves behind all the MooCow bits!

This is called
void printWeight(FarmAnimal animal)

object slicing ¢

cout << animal.weight;
It’s generally bad. }

int main()

To prevent it, use {

. MooCow cow;
pomters or printWeight(cow);
references instead!

Question

® Pet has a makeNoise
class Pet

(function

public: . .
void makeNoise() Pet’s implementation of

{ | makeNoise() isn’t good
cout << “(nothing)”;

) enough for Cat, so Cat
}i overrides it

class Cat : public Pet Does this code snippet

{ . ,
public: compile? What’s the

void makeNoise() output?

{

cout << “MEOW! "
} Cat animal;

animal .makeNoise();

class Pet

{
public:

void makeNoise()

{

cout << “(nothing)”;

}
}i

class Cat : public Pet

{
public:

void makeNoise()

{
cout << “MEOW! "

}

® How about this one!?

Cat* animal = new Cat;
animal->makeNoise();

® ...and this one!?

Pet* animal = new Cat;
animal->makeNoise();

Problem

o C++ uses static type checking (early binding) -
types are checked at compile time, not run-time
(late binding)!

® A major design goal of C++: produce code that runs
as quickly as possible

Pet* animal = new Cat;

® VWhat's happening here: animal->makeNoise () ;

® We have a pointer of type Pet
® Pet has a method called makeNoise
® Therefore, Pet::makeNoise is called

P So then:

class Pet Pet* animal = new Cat;
{ animal->makeNoise();
public:
void makeNoise()
{ ® The compiler sees animal

cout << “(nothing)”; as a Pet, instead of a Cat

}

}i Therefore Pet::makeNoise

class Cat : public Pet () is getting called instead

{ s of Cat::makeNoise()
public:

void makeNoise()

{ How do we tell the

cout << “MEOW!"; compiler to figure out the
t correct version of
makeNoise to call?

Virtual Methods

Shape
virtual method: area()

Triangle
virtual method: area()

Equilateral
no area() method

® Jo do this, we can mark a
method as virtual.

The compiler will use
run-time type

identification to call the
most specific version of
the method that it can!

what version of area() gets called?

Shape* s = new Equilateral;
s—->area();

Virtual: How-to

class Pet

{
public:

virtual void makeNoise()

{

cout << “(nothing)”;

}
}i

class Cat

{
public:

void makeNoise()

{

: public Pet

cout << “MEOW! "

}
}i

® TJo declare a virtual
method, stick the
keyword virtual before
Its return type

This automatically makes
every overridden version
of the method virtual too

Only works in one
direction: marking
Cat::makeNoise as virtual
doesn’t make
Pet::makeNoise virtual!

Virtual Rules

Virtual methods are slightly slower than
non-virtual methods (why?)

Static methods can’t be virtual, and virtual
methods can’t be static

One way to make this a non-issue: make

every base-class method virtual. (why does
this work?)

If in doubt: make your methods virtual

Inheritance

Shape
Shape() Equilateral e;

~Shape()

® Small review: in which order
Triangle are the constructors

Triangle executed!?
~Triangle()
® How about the destructors!?

What would make sense here?

Equilateral
Equilateral()

~Equilateral()

Virtual Destructors

Shape Shape* s = new Equilateral();
Shape()
~Shape() o

delete s;

: ® A destructor is a method like any
Triangle
Triangle other, and the same rules apply

~Triangle() ® Destructors need to be marked

virtual!

® What should happen here!

Equilateral

Equilateral() ® \What does happen, if the destructor
~Equilateral() is not virtual?

The Fix

class Pet

{
public:

virtual ~Pet();

}i

class Cat : public Pet

{
public:

// doesn’t need to be
// marked virtual!
~Cat ();

}i

® When using inheritance,
always make your
destructors virtual!

Again, making a virtual
base class constructor
makes all inherited
destructors also be
virtual 5

-

A Useless Function

® FEarlier, we saw this
implementation of
public: the makeNoise()

void makeNoise()

‘ function:

cout << “(nothing)”;

class Pet

{

}
}i

® |t’s kinda useless.

® |[ts only purpose is to help define an interface: to provide a
function for derived classes to override

® So it’s not important what Pet::makeNoise itself does!

Abstract Methods

e An abstract method is a declaration of a
method, without a definition

® We're telling the compiler:

® This method won’t be defined in this
class, but

® Any usable derived class must implement
this method!

® These are also known as pure virtual
methods

A class with an abstract method is known as
an abstract class

An abstract class can’t be instantiated!

To be usable, all methods have to be
defined. Since abstract classes have
undefined methods (the abstract ones!) they
can’t be instantiated

To be usable, a derived class must override
all abstract methods

The Last One

class Pet

{
public:
virtual void makeNoise() = 0;

virtual string getName();
}i

\

® This turns the class into an we declare a method to be

abstract class abstract by tacking “= 0” onto
the declaration

Weird C++ rule: every class
needs to have at least one
“regular” virtual method
when also using abstract
methods!

