
More INheritance
stuff

Some Review
• What’s the syntax for a

switch statement?

• Rewrite this code using
the ternary operator.

• How does C++ execute
the following command?

int var = 10;

if(AA)
 var = 45;
else
{
 if(BB)
 var = 20;
 else
 var = 16;
}

if(test1 || test2)
 doStuff();

• What is Dog’s
relationship to Pet?

• What member variables/
functions of Pet are
inherited by Dog?

• What kind of class is
woofy? Are we dealing
with one class or two
classes?

class Pet
{
 public:
 Pet();
 ~Pet();
 void play();
 void makeNoise();
 protected:
 string name;
 private:
 string owner;
};

class Dog : public Pet
{
 public:
 Dog();
 void makeNoise();
};

int main()
{
 Dog woofy;
}

Review
Questions

class Dog : public Pet
{
 public:
 Pet();
 ~Pet();
 Dog();
 void play();
 void makeNoise();
 private:
 string name;

 (hidden):
 string owner;
};

class Pet
{
 public:
 Pet();
 ~Pet();
 void play();
 void makeNoise();
 protected:
 string name;
 private:
 string owner;
};

class Dog : public Pet
{
 public:
 Dog();
 void makeNoise();
};

int main()
{
 Dog woofy;
}

• Dog is a single class

• However, Dog has inherited a
lot of code from Pet!

• Not all of it is accessible

An alternative...
• An alternative to inheritance is called

composition (or aggregation)

• Composition is when one class contains
instances of another instead of inheriting
from it

class Car
{
 // ...

 private:
 CarEngine e;
}

• We use this when
inheritance doesn’t make
sense but we’d still like to
have one class be able to
use bits of another class

Some Questions

• A common mistake is to try and use
inheritance where it doesn’t make sense

• When should we use inheritance?

• When should we use composition?

• Is one better than the other?

Object Types

• tri is of type Triangle

• We can also say that tri is a
Shape, too!

• Triangle is derived from
Shape, so everything in Shape
will also be in every instance
of Triangle

Rec Tri

Shape

Triangle tri;

More Object Types

• Since a Triangle is of type Shape, we can refer to
it as if it were a Shape.

• This works especially well with pointers:

Shape* ptr = new Triangle;

• What type is ptr?

• What kind of thing is ptr pointing to?

Even More Object Types

• ptr is a Shape pointer. Given a pointer, we can’t
tell exactly what kind of thing it’s pointing to!

• Only that it’s either a Shape, or something
derived from Shape

• So it could be Shape, Triangle, Rectangle, Circle,
Octrahedron... any class derived from shape!

Shape* ptr = new Triangle;

Why this is awesome:
• It lets us treat all kinds of Shapes exactly the

same way

• No need to know what type a pointer is actually
pointing to - this is called polymorphism

• Can only use Shape’s interface

void printShapeArea(Shape* s)
{

cout << “This shape’s area is:”
 << s->area() << endl;

}

What type does s point
to? Triangle?

Rectangle? Circle?
Dodecahedron?

Polygon? As long as
it is derived from Shape,
we don’t have to care!

For example:
• Here we’re defining an array of pointer-to-

Shapes:

• Each element in array can be pointing to a
different kind of Shape

• They all have a common interface though, so
we can treat them all identically

Shape* array[10];

An Issue

• We can transparently treat
MooCow as a FarmAnimal (this
is what polymorphism means!)

• So we can pass MooCow into a
function that accepts FarmAnimal.

FarmAnimal
int weight;

MooCow
void chewCud();
bool hungry;

void printWeight(FarmAnimal animal)
{
 cout << animal.weight;
}

int main()
{
 MooCow cow;
 printWeight(cow);
}

let’s talk about this...
• How is cow being passed?

• What type is cow?

• What type does
printWeight accept?

Object Slicing
• For this to work, a MooCow must be converted to

a FarmAnimal

• The compiler takes all the FarmAnimal bits and
leaves behind all the MooCow bits!

void printWeight(FarmAnimal animal)
{
 cout << animal.weight;
}

int main()
{
 MooCow cow;
 printWeight(cow);
}

• This is called
object slicing

• It’s generally bad.

• To prevent it, use
pointers or
references instead!

Question
• Pet has a makeNoise

function

• Pet’s implementation of
makeNoise() isn’t good
enough for Cat, so Cat
overrides it

• Does this code snippet
compile? What’s the
output?

class Pet
{
 public:
 void makeNoise()
 {
 cout << “(nothing)”;
 }
};

class Cat : public Pet
{
 public:
 void makeNoise()
 {
 cout << “MEOW!”;
 }
};

Cat animal;
animal.makeNoise();

Question, cont.

• How about this one?class Pet
{
 public:
 void makeNoise()
 {
 cout << “(nothing)”;
 }
};

class Cat : public Pet
{
 public:
 void makeNoise()
 {
 cout << “MEOW!”;
 }
};

Cat* animal = new Cat;
animal->makeNoise();

• ... and this one?

Pet* animal = new Cat;
animal->makeNoise();

The Problem
• C++ uses static type checking (early binding) -

types are checked at compile time, not run-time
(late binding)!

• A major design goal of C++: produce code that runs
as quickly as possible

• What’s happening here:

• We have a pointer of type Pet

• Pet has a method called makeNoise

• Therefore, Pet::makeNoise is called

Pet* animal = new Cat;
animal->makeNoise();

So then:

• The compiler sees animal
as a Pet, instead of a Cat

• Therefore Pet::makeNoise
() is getting called instead
of Cat::makeNoise()

• How do we tell the
compiler to figure out the
correct version of
makeNoise to call?

class Pet
{
 public:
 void makeNoise()
 {
 cout << “(nothing)”;
 }
};

class Cat : public Pet
{
 public:
 void makeNoise()
 {
 cout << “MEOW!”;
 }
};

Pet* animal = new Cat;
animal->makeNoise();

Virtual Methods
• To do this, we can mark a

method as virtual.

• The compiler will use
run-time type
identification to call the
most specific version of
the method that it can!

Shape
virtual method: area()

Triangle
virtual method: area()

Equilateral
no area() method Shape* s = new Equilateral;

s->area();

what version of area() gets called?

Virtual: How-to
• To declare a virtual

method, stick the
keyword virtual before
its return type

• This automatically makes
every overridden version
of the method virtual too

• Only works in one
direction: marking
Cat::makeNoise as virtual
doesn’t make
Pet::makeNoise virtual!

class Pet
{
 public:
 virtual void makeNoise()
 {
 cout << “(nothing)”;
 }
};

class Cat : public Pet
{
 public:
 void makeNoise()
 {
 cout << “MEOW!”;
 }
};

virtual

Virtual Rules

• Virtual methods are slightly slower than
non-virtual methods (why?)

• Static methods can’t be virtual, and virtual
methods can’t be static

• One way to make this a non-issue: make
every base-class method virtual. (why does
this work?)

• If in doubt: make your methods virtual

Inheritance

• Small review: in which order
are the constructors
executed?

• How about the destructors?
What would make sense here?

Shape
Shape()
~Shape()

Triangle
Triangle
~Triangle()

Equilateral
Equilateral()
~Equilateral()

Equilateral e;

Virtual Destructors

• A destructor is a method like any
other, and the same rules apply

• Destructors need to be marked
virtual!

• What should happen here?

• What does happen, if the destructor
is not virtual?

Shape
Shape()
~Shape()

Triangle
Triangle
~Triangle()

Equilateral
Equilateral()
~Equilateral()

Shape* s = new Equilateral();
...
delete s;

The Fix

• When using inheritance,
always make your
destructors virtual!

• Again, making a virtual
base class constructor
makes all inherited
destructors also be
virtual

class Pet
{
 public:
 virtual ~Pet();
};

class Cat : public Pet
{
 public:

 // doesn’t need to be
 // marked virtual!
 ~Cat();
};

A Useless Function

• It’s kinda useless.

• Its only purpose is to help define an interface: to provide a
function for derived classes to override

• So it’s not important what Pet::makeNoise itself does!

class Pet
{
 public:
 void makeNoise()
 {
 cout << “(nothing)”;
 }
};

• Earlier, we saw this
implementation of
the makeNoise()
function:

Abstract Methods
• An abstract method is a declaration of a

method, without a definition

• We’re telling the compiler:

• This method won’t be defined in this
class, but

• Any usable derived class must implement
this method!

• These are also known as pure virtual
methods

Abstract Methods

• A class with an abstract method is known as
an abstract class

• An abstract class can’t be instantiated!

• To be usable, all methods have to be
defined. Since abstract classes have
undefined methods (the abstract ones!) they
can’t be instantiated

• To be usable, a derived class must override
all abstract methods

The Last One

• This turns the class into an
abstract class

• Weird C++ rule: every class
needs to have at least one
“regular” virtual method
when also using abstract
methods!

class Pet
{
 public:
 virtual void makeNoise() = 0;
 virtual string getName();
};

we declare a method to be
abstract by tacking “= 0” onto

the declaration

