
Random
catch-up

Stuff

A new thing...

• We often find ourselves doing stuff like this:

• ... where we just want to execute a single
statement based on the outcome of some
condition (here, setting a value).

int bob;

if(someConditionIsTrue)
 bob = 17;

else
bob = 96;

A Shortcut:

• C++ provides us a nifty shortcut to do this sort
of thing:

•The TERNARY
OPERATOR!!!!
• (what does ternary mean?)

An Example

int bob;

if(someCondition)
 bob = 17;

else
bob = 96;

int bob = someCondition ? 17 : 96;

This unwieldy piece of code:

can be reduced to this:

Anatomy of the Ternary
Operator

condition ? truePart : falsePart

this would go in
the if statement the single statement that gets

executed if condition is
true

the single statement that gets
executed if condition is false

Usages

• What is this good for?

• Shortening code

• Assigning const values conditionally

int max(int a, int b)
{
 return a > b ? a : b;
}

bool correct = getValue();
const int PI = correct ? 3.14 : 92.8;

Question
• Hopefully you

should know the
answer to this by
now...

• Why might the
ternary operator
not always be a
good idea?

Bad Code!

• On the other end of the
conditional execution
scale:

• When you are testing a
single value against a lot
of conditions, you get a
lot of hard-to-read code

• Like this!

int input = getInput();

if(input == 0)
doStuff();

else if(input == 1)
doSomethingElse();

else if(input == 2)
doAThirdThing();

else if(input == 3)
playSpades();

else if(input == 4)
watchScrubs();

else if(input == 5)
goBirdWatching();

else if(input == 6)
eatHamburger();

the switch statement

• The switch statement
is often a more
elegant, sometimes
faster way to do this

• switch tests a single
integer variable
against a large
number of conditions

• Here we’re checking
input against 0 - 6

int input = getInput();

switch(input)
{

case 0: doStuff();
 break;
case 1: doSomethingElse();
 break;
case 2: doAThirdThing();
 break;
case 3: playSpades();
 break;
case 4: watchScrubs();
 break;
case 5: goBirdWatching();
 break;
case 6: eatHamburger();
 break;

}

int input = getInput();

switch(input)
{

case 0: doStuff();
 break;
case 1: doSomethingElse();
 break;
case 2: doAThirdThing();
 break;
case 3: playSpades();
 break;
case 4: watchScrubs();
 break;
case 5: goBirdWatching();
 break;
case 6: eatHamburger();
 break;

}

entire switch
statement enclosed

in curly braces

this can be any integer
expression - in

parenthesis, just like an
if statement

switch keyword

case statement:
must be unique!

Case
Statements

char grade = getGrade();

switch(grade)
{

case ‘A’: callMom();
 cout << “yay!”;
 postOnFridge();
 break;

case ‘D’: sigh();

case ‘F’: grumble();
 cout << “boo.”;
 studyHarder();
 break;

}

• When the input value is
equal to a case value,
everything until the next
break is executed

• Even code in other case
statements!

• this is called falling through

• Any code that can go in
a function can go in a
case statement

Default
Statements

• Code in the default
statement is executed
if none of the case
statements are true

• There can be only one
of these per switch
statement

char grade = getGrade();

switch(grade)
{

case ‘A’: callMom();
 cout << “yay!”;
 postOnFridge();
 break;

case ‘D’: sigh();

case ‘F’: grumble();
 cout << “boo.”;
 studyHarder();
 break;

default: cout << “meh.”;
 eatHamburger();
 break;

}

A Random Note About C++
Conditionals

bool one()
{
 cout << “one()” << endl;
 return false;
}

bool two()
{
 cout << “two()” << endl;
 return false;
}

int main()
{
 if(one() && two())
 cout << “true” << endl;
 return 0;
}

What is the output
of this program?

Minimal Evaluation

• C++ uses a strategy called minimal evaluation or
short circuit evaluation to avoid doing unnecessary
work

• This comes into play with the && operator, which is
evaluated left-to-right:

if(one() && two())
 cout << “true” << endl;

(returns false)

Minimal Evaluation

• Keep minimal evaluation in mind
when writing conditional expressions

• This can actually be really handy!

• Here, we won’t access ptr->value unless ptr
is non-null

if(ptr && ptr->value == 42)
{

// do stuff
}

this space intentionally left blank

Inheritance

• Inheritance is a C++ feature in which one
class can “inherit” the member functions and
variables from another class

• The new class (the one doing the inheriting)
is called the derived class

• The class we’re inheriting from is called the
base class

class Rectangle
{
 public:
 Rectangle();

 // skipping stuff...

 int area();
 void draw();

 private:
 Color innerColor;
 Color lineColor;
 int lineWidth;
 int x, y;
 int width, length;
 int id;
};

• Let’s say we have a
Rectangle class, with a
fair amount of stuff in it

• We’d like to build a simple
Triangle class

• Most of the code would
be the same between
these two classes!

• area(), draw() would
change

Inheritance

• We could “inherit” most of
Triangle’s code from Rectangle

• A better way: move most of
Rectangle’s code into a new base
class - Shape - and derive both
Triangle and Rectangle from Shape

• Triangle and Rectangle now only
need to implement specific
features: the general stuff can be
stuck in the Shape class

Rec Tri

Shape

protected:
 Color innerColor;
 Color lineColor;
 int lineWidth;
 int x, y;
 int width, length;
private:
 int id;

Inheritance 2

• Derived classes inherit everything
in the base class(es)

• Each instance of Triangle has:

• All the member variables and
functions from the Shape class

• And all the member variables
and functions from Triangle

• Triangles has copies of x, y, id, etc.
But can it access them?

Rec Tri

Shape

void calc();
float angle;

Access Specifiers

• public means the same thing it always did

• private too: private members can only be
accessed from within the class - not any
others (including any derived classes!)

• New! protected variables can be
accessed by the class and any derived classes
- but not any other class!

protected:
 Color innerColor;
 Color lineColor;
 int lineWidth;
 int x, y;
 int width, length;
private:
 int id;

Access

• So, in this set of classes:

• innerColor, lineColor, lineWidth,
x, y, width, height are all
accessible by Shape,
Triangle, Rectangle, and no
other classes

• id is only accessible by Shape

• Same access rules apply for
member functions

Rec Tri

Shape

void calc();
float angle;

class Triangle : public Shape
{
 public:
 Triangle();
 int area();

 private:
 void calc();
 // etc...
};

class name colon public, followed by
base class name

• Base class must
already be
declared here

• Triangle can
have all its own
stuff - methods,
vars, whatever

...syntax

Inheritance

• What gets inherited?

• All member variables, (nearly) all functions

• What does not get inherited?

• constructors and destructors

• Assignment operators (operator=)

• Friends

Constructors
• Remember, a constructor gets called for

every class that gets instantiated

• Sometimes it’s a behind-the-scenes
constructor, but there always is one!

• With inheritance, there are (at least) two
classes involved: the base class and the
derived class

• So, at least two constructors are getting
called!

Snippet
• What is the output of

this program?

class Base
{
 public:
 Base()
 { cout << "base\n"; }
};

class Derived : public Base
{
 public:
 Derived()
 { cout << "derived\n"; }
};

int main()
{
 Derived d;
 return 0;
}

Construction Order

• Base classes will always
be constructed before
any derived classes.
(Why?)

• The base class
constructor is getting
called, even though it’s
not being called explicitly

• If Base has multiple
constructors, which one
gets called?

class Base
{
 public:
 Base()
 { cout << "base\n"; }

 Base(int x)
 { cout << "base 2\n"; }
};

class Derived : public Base
{
 public:
 Derived()
 { cout << "derived\n"; }
};

Constructor Init List
• C++ will call the default

constructor for any base
classes automatically

• If there is no default
constructor (when would
that be?) then we have to
explicitly call one

• This requires special syntax
called the constructor
init list.

Constructor
Init Lists

• The constructor init
list lets you pass
parameters to the
base class constructor

• This is like a function
call: it will call the
correct overloaded
constructor

class Base
{
 public:
 Base()
 { cout << "base\n"; }

 Base(int x)
 { cout << "base 2\n"; }
};

class Derived : public Base
{
 public:
 Derived();
};

Derived::Derived()
 : Base(5)
{
} Constructor Init List

More CIL
• The CIL can be used

for regular member
variables, too

• Here, x and y are
integers being
initialized in the
Constructor Init List

• This happens before
the constructor body
executes!

class Derived : public Base
{
 public:
 Derived();
 private:
 int x, y;
};

Derived::Derived()
 : Base(5), x(5), y(18)
{
}

Coding

• Let’s play with inheritance!

