™ VISKEC] mYr e ——

e wd § Fll_Hq_lH‘lﬁ [B, 5= N BN - Weaguy sswess)

RANDOM
CATCH-UP
STUFF

A new thing...

® We often find ourselves doing stuff like this:

int bob;

if(someConditionIsTrue)
bob = 17;

else
bob = 96;

® ... where we just want to execute a single
statement based on the outcome of some

condition (here, setting a value).

A Shortcut:

e C++ provides us a nifty shortcut to do this sort
of thing:

¢ The TERNARY
OPERATOR!!!!

® (what does ternary mean?)

An Example £

This unwieldy piece of code:

int bob;

if(someCondition)
bob = 17;

else
bob = 96;

can be reduced to this:

int bob = someCondition ? 17 : 96;

Anatomy of the Ternary
Operator

condition ? truePart : falsePart
A A

1.11is would go in
the if statement

the single statement that gets

executed if condition is
true

the single statement that gets
executed if condition is false

® What is this good for!?

® Shortening code

{

return

}

int max(int a, int b)

a>b ? a : b;

® Assigning const values conditionally

bool correct =
const int PI

getValue();
correct ? 3.14

: 92.

87

Question

® Hopefully you
should know the
answer to this by
now...

Why might the
ternary operator
not always be a
good idea!

Bad Code!

® On the other end of the int input = getInput();
conditional execution

if(input == 0)

scale: doStuff();

else if(input == 1)

® VWhen you are testing a doSomethingElse();
. . else if(input ==)
single value against a lot doAThirdThing () ;
of conditions, you get a else if(input == 3)
playSpades();
lot of hard-to-read code else if(input == 4)

watchScrubs();

® |ike this! else if(input == 5)
goBirdWatching();

else if(input == 6)
eatHamburger();

the switch statement

s int input = getInput();
® [he switch statement
switch(input)

is often a more (
elegant, sometimes case 0: doStuff();

break;
faSter Wa)’ to CIO thIS case 1: doSomethingElse();

break;

switch tests a single case 2: doAThirdThing();

break;

integer variable case 3: playSpades();
against a large break;

case 4: watchScrubs();

number of conditions break;

case 5: goBirdWatching();

Here we're checking preak;

case 6: eatHamburger();

input against 0 - 6 break;

this can be any ir?teger Aﬁﬁ_o\u E D“"

expression - in
parenthesis, just like an
if statement

input = getInput();

y switch(input)

{
/////’/////’ case 0: doStuff();
break;

switch keyword : doSomethingElse();

break;

case statement: : doAThirdThing();
break;

must be unique! : playSpades();

break;
: watchScrubs();

entire switch break;

: goBirdWatching();
statement enclosed T

in curly braces : eatHamburger();

* break;
}

Case
Statements

® VWhen the input value is
equal to a case value,

everything until the next iwitch(grade)
break is executed e 978 eI,

cout << “yay!”;

® Even code in other case postOnFridge();
’ break;
statements!

char grade = getGrade();

. , : sigh();
® this is called falling through

: grumble();
® Any code that can go in cout << “boo.";

. . studyHarder () ;
a function can go ina break;
case statement

Default
Statements

char grade = getGrade();

. switch(grade)
® Code in the default {
case ‘A’': callMom();

statement is executed
) cout << “yay!”;
if none of the case postOnFridge();

b k;
statements are true res

: sigh();
® There can be only one
: grumble();

of these per switch Sout << “hoo.
statement studyHarder () ;

break;

1// default: cout << “meh.”;
eatHamburger () ;
break;

A Random Note About C++
Conditionals

bool one()

{
cout << “one()” << endl;
return false;

}

bool two() What .is the output
{ of this program!?

cout << “two()"” << endl;
return false;

}

int main()
{
if(one() && two())
cout << “true” << endl;
return 0;

Minimal Evaluation

® C++ uses a strategy called minimal evaluation or
short circuit evaluation to avoid doing unnecessary
work

® This comes into play with the && operator, which is
evaluated left-to-right:

\

if(one() && two())
cout << “true” << endl;

(returns false)

Minimal Evaluation

® Keep minimal evaluation in mind
when writing conditional expressions

® This can actually be really handy!

if(ptr && ptr->value == 42)

{
// do stuff

}

® Here, we won’t access ptr->value unless ptr
is non-null

this space intentionally left blank

y
% Inheritance

® Inheritance is a C++ feature in which one
class can “inherit”’ the member functions and
variables from another class

® The new class (the one doing the inheriting)
is called the derived class

® The class we're inheriting from is called the
base class

class Rectangle

{
public:

Rectangle();

// skipping stuff...

int area();
void draw();

private:
Color innerColor;
Color lineColor;
int lineWidth;
int x, vy;
int width, length;
int id;

Let’s say we have a

Rectangle class, with a
fair amount of stuff in it

We'd like to build a simple
Triangle class

Most of the code would
be the same between
these two classes!

area(), draw() would
change

Inheritance

® \We could “inherit” most of
Triangle’s code from Rectangle

® A better way: move most of
Rectangle’s code into a new base
class - Shape - and derive both
Triangle and Rectangle from Shape

/ Triangle and Rectangle now only
need to implement specific
features: the general stuff can be
stuck in the Shape class

protected:

Inheritance 2

Color lineColor;
int lineWidth;

int x, y;

int width, length;

private: ® Derived classes inherit everything
int id; .
in the base class(es)

® FEach instance of Triangle has:

® All the member variables and
functions from the Shape class

/ ® And all the member variables
and functions from Triangle
Rec . . .
® Triangles has copies of x,y, id, etc.
void calc(); But can it access them!?
float angle;

Access Specifiers ™
P \

® public means the same thing it always did

® private too: private members can only be
accessed from within the class - not any
others (including any derived classes!)

¢ New! protected variables can be
accessed by the class and any derived classes
- but not any other class!

protected:
Color innerColor;
Color lineColor;
int lineWidth;
int x, y;
int width, length;
private:
int id;

void calc();
float angle;

Access

® So,in this set of classes:

® innerColor, lineColor, lineWidth,
X, Y, width, height are all
accessible by Shape,
Triangle, Rectangle, and no
other classes

® id is only accessible by Shape

® Same access rules apply for
member functions

class name

\

..syntax

public, followed by
base class nhame

/

Y

class Triangle
{
public:
Triangle();
int area();

private:
void calc();
// etc...

}i

: public Shape

4

® Base class must
already be
declared here

Triangle can
have all its own
stuff - methods,
vars, whatever

Inheritance

® What gets inherited!?

® All member variables, (nearly) all functions
® What does not get inherited!?

® constructors and destructors

® Assignment operators (operator=)

® Friends

"
a

® Remember, a constructor gets called for
every class that gets instantiated

® Sometimes it’s a behind-the-scenes
constructor, but there always is one!

® With inheritance, there are (at least) two

classes involved: the base class and the
derived class

® So, at least two constructors are getting
called!

class Base

{
public:

Base()
{ cout << "base\n"; }

¥

class Derived : public Base

{
public:

Derived()
{ cout << "derived\n"; }

b

int main(Q)

{

Derived d;
return 0;

¥

Snippet

® What is the output of
this program?

Construction Order

class Base

{
public:

Base()
{ cout << "base\n"; }

Base(int x)
{ cout << "base 2\n"; }

¥

class Derived : public Base

{
public:

Derived()
{ cout << "derived\n"; }

s

® Base classes will always

be constructed before
any derived classes.

(Why?)

The base class
constructor is getting
called, even though it’s
not being called explicitly

If Base has multiple
constructors, which one
gets called?

Constructor Init List

e C++ will call the default
constructor for any base
classes automatically

If there is no default
constructor (when would
that be?) then we have to
explicitly call one

This requires special syntax
called the constructor

init list.

class Base

{
public:

Base()
{ cout << "base\n"; }

Base(int x)
{ cout << "base 2\n"; }

s

class Derived : public Base

{
public:

Derived();

s

Derived: :Derived()
Base(5)

Constructor
Init Lists

® The constructor init
ist lets you pass
barameters to the
pase class constructor

® This is like a function
call: it will call the
correct overloaded
constructor

Constructor Init List

class Derived : public Base IL
: More C

public:
Derived();

private: ® [he CIL can be used
int x, y;
-’ for regular member

variables, too

Here, x and y are

Derived: :Derived()

. Base(5), x(5), y(18) integers being
{ initialized in the

1 Constructor Init List

This happens before
the constructor body
executes!

Coding

® | et’s play with inheritance!

