
FRIEND
&

STATIC

Question
• Say we had a Node class:

• …but all the node manipulation was done
in a separate class called LinkedList.

• Would LinkedList be able to access the
next variable in an instance of Node?

class Node
{
 private:
 int data;
 Node* next;
};

Sometimes you just need a
friend

• Sometimes you want external code
(code that’s not in the class) to be able
to access private class variables!

• … but not anyone else.
• This can be done using the C++

friend keyword.

How It All Happens

• This is done by adding the “friend class
ClassName” within the class:

• Now LinkedList can access all variables in
an instance of Node as if they were public.

class Node
{
 friend class LinkedList;

 private:
 int data;
 Node* next;
};

void LinkedList::doStuff()
{
 Node* ptr = head;

 // used to be illegal
 // now it’s legal!
 ptr = ptr->next;
}

Friend Declarations

• Friend declarations can be put anywhere
in the class – public section, private
section, top, bottom, whatever

• The classes that you declare to be friends
don’t actually have to exist…
– so watch for typos!

• A class can have lots of friends!

class Node
{
 friend class LinkedList;

 private: // ... etc
};

Friend Functions

• Another option is to
declare a single
function to be a friend

• Here, the function
void breakStuff()
is allowed private
access to Node

• How could we make
a function in another
class be a friend?

class Node
{
 friend void breakStuff
();

 private:
 int data;
 Node* next;
};

void breakStuff()
{
 Node* ptr = head;

 // mwahahahahaha!!!
 delete ptr;
 ptr = NULL;
}

Friend Functions
class Node
{
 friend void breakStuff(int x, float q);

 private:
 int data;
 Node* next;
};

to make this work we have to
put the entire function signature
here!

• How would we make a member function of
another class a friend? (Not the entire
class – just a single member function)

Friendliness
• Is friend a good idea or a bad idea?

• Does friend break the idea of encapsulation?

• When and why might you want to do this?

How to Remember This:

In C++, all
your friends
can see your
privates.

Static: Background

• Here we have 6
different instances
of the class Dog.

• Each instance has
its own set of
member variables.

• So there are 6
different age
variables – one
per instance.

class Dog
{
 private:
 char name[50];
 int age;
};

int main()
{
 Dog gus;
 Dog pepper;
 Dog bitsy;
 Dog charlie;
 Dog toby;
 Dog checkers;
}

The Problem

• What if we wanted to keep a count of the
number of instances of Dog in the entire
program?

• Where would it make most sense to keep
that counter?
– A member variable in Dog?
– A global variable?

• The ideal would be a counter that belongs
to the entire class – not just a single
instance of it.

Introducing static

• This can be done using the C++ keyword
static.

• static variables are shared amongst all
instances of the class – no one instance
gets to “own” a static variable!

• Best way to think of a static: the lifetime of
a global variable, but the access/scope of
a class member variable (what’s the
difference?)

Declaring Static Variables
• static variables are

weird – we declare
them inside the class,
we define them
outside the class

• Think of them like a
function – the
declaration is only a
prototype!

• It still needs to be
defined in the global
scope (why?)

class Dog
{
 private:
 char name[50];
 int age;

 // counter declaration
 static int counter;
};

// actual counter definition
int Dog::counter = 0;

So…
• There is a single
counter variable in this
program…

• To which of the 6 Dogs
does counter “belong”?

• Which of them can
access it?

• What do you think is the
syntax for doing so?
(inside the class)

class Dog
{
 private:
 char name[50];
 int age;

 // counter declaration
 static int counter;
};

// actual counter definition
int Dog::counter = 0;

int main()
{
 Dog gus;
 Dog pepper;
 Dog bitsy;
 Dog charlie;
 Dog toby;
 Dog checkers;
}

Accessing
Static Variables

• Static variables can
be accessed exactly
like regular variables!

• In addition, access
specifiers (public,
private, etc.) work the
same way they do
with non-static
variables

class Dog
{
 public:
 Dog()
 {
 counter++;
 }

 ~Dog()
 {
 counter--;
 }

 private:
 char name[50];
 int age;

 // counter declaration
 static int counter;
};

// actual counter definition
int Dog::counter = 0;

Meanwhile, Outside the Class…
• As long as counter is

public, it can be
accessed outside the
class as if it were a
non-static variable

• What happens if there
are no instances of
Dog we can use to
access counter?

int main()
{
 Dog gus;
 Dog pepper;
 Dog bitsy;
 cout << bitsy.counter;

 Dog charlie;
 Dog toby;
 {
 Dog checkers;
 cout << gus.counter;
 }

 cout << toby.counter;
}

Viva la variables estáticas!!
• Static member variables always exist – whether

the class has ever been instantiated or not!
• We can access them using the scope resolution

operator:

• This works because counter belongs to the
class Dog – not any one instance of Dog!

int main()
{
 cout << Dog::counter << endl;
}

Static Methods
• Methods (member functions) can also be

static!
• Static methods:

– don’t belong to any particular instance of the
class

– can be called even if there are no instances of
the class!

– can not access any non-static data in the
class

Broke

• In this example
program, getCount() tries
to access both age and
counter

• If we were to do this:

• … which instance of age
would the function
access?

• (This doesn’t compile,
by the way!)

class Dog
{
 public:
 static int getCount()

 private:
 char name[50];
 int age;

 // counter declaration
 static int counter;
};

int Dog::getCount()
{
 age++;
 return counter;
}

// actual counter definition
int Dog::counter = 0;

cout << Dog::getCount();

The Rules:
• Can static methods access:

– Static member variables? - Yes!
– Non-static member variables? - No!

• Can regular methods access:
– Static member variables? - Yes!

• but there’s only one copy to be shared amongst all instances
of the class

– Non-static member variables? - Yes!
• This is the normal case

Non-Class Static Variables
• Regular variables can

be static too - not just
class member variables

• Just like class static
variables, regular static
variables have:
– global lifetime
– local scope

• Static variables are
only initialized once

void test()
{

static int bob = 1;
cout << bob++ << endl;

}

int main()
{

test();
test();
test();
test();
test();

}

