
constructors
&

destructors
&

header files

Class Review
• What is encapsulation?

• In C++, how is a struct different than a class?

• How do you declare member functions in a
class? How do you define them?

• What’s the syntax for calling those methods?

• What happens when we mark a method as
public? A member variable? How about
private?

Const Review

const int PI = 3.14159;

class whatever
{
public:

int getAlpha(const int& bob) const;

private:
int stuff;

};

What are the different uses of const in
this code snippet?

Question

• So if a variable is
declared private (like
bupkis and foo)...

• Then can outside code
- like main() - initialize
it?

• If not, how does it ever
get initialized?

class Data
{
public:

int getAlpha();

private:
int alpha;
int beta;

};

Constructors

• This kind of initialization happens through a
constructor

• A constructor is a special class method that
is run when the object is first instantiated

• Purpose of a constructor: to initialize the
object, setup any dynamic memory, etc.

Constructors

class Data
{
public:

Data();
Data(int a, int b);

int getAlpha();

private:
int alpha;
int beta;

};

constructors have:

The same name as
the class (aka Data)

no return type

Note that constructors
can be overloaded too -
You can have as many constructors as you need, as long as
each one has a unique signature

Constructors

• A constructor with no
parameters is called a
default constructor. That lets
you do this:

class Data
{
public:

Data();
Data(int a, int b);

int getAlpha();

private:
int alpha;
int beta;

};

Data d;

• The other constructor allows
you to do this:

Data d(4,5);

Default Constructors
• You aren’t required to define any constructors (we didn’t

in the last class!)

• If you don’t define any constructors, C++ will define an
empty constructor for you - it doesn’t actually do
anything

• Once you define any constructor then C++ stops giving
you the empty one for free

class BZisaFoo
{
public:

BZisaFoo(int a);
};

// this will not compile
BZisaFoo correct;

Default Parameters

• Constructors can have default parameters too

• Like any other C++ function, you have to make
sure that constructors aren’t ambiguous!

class Circle
{
public:

Circle ();
Circle(float radius = 1.0);

};
Circle c;

which constructor
would this use?

Destructors
• Constructors are called

when an object is
created...

• A destructor is called
when the object is
deleted.

• A destructor has no
return value, and is
named after the class, but
with a tilde (~) at the
beginning.

class speaker
{
public:

speaker();
~speaker();

};

To Summarize...

• A constructor is a special function
thatis called when an object is
created

• A destructor is a special function that
is called when an object is destroyed

• when the object is manually
deleted (via delete)

• or, when the object goes out of
scope

{
Data d;
...

}

default
constructor
is called

d goes out
of scope;
destructor
is called

Questions
• Should a constructor / destructor be const?

Should they accept const parameters?

• What’s wrong with the following snippet of
code:

class Circle
{

int Circle();
int Circle(float radius);

};

Quizlet
#include <iostream>
using namespace std;

class printer
{
public:

printer()
{

cout << “CREATE”
 << endl;

}

~printer()
{

cout << “DESTROY”
 << endl;

}
};

int main()
{

printer a[5];
return 0;

}

• Is this valid code?

• What’s wrong with it?

• What would the
output be if it worked
properly?

Copying Classes

class Square
{
public:

Square();
Square(int, int, int, int);
int area();

private:
int x, y, w, h;

};

Let’s say we have an
instance of the Square
class:

Square ted;

And we want to copy all its data into a new Square
instance that we’re creating. Can we do this?

Square bill(ted);

Sure we can!
• C++ automatically defines a copy constructor

for each class.

• That copy constructor copies each element of the
class individually, by value, into the new class

class String
{
public:

String(char* s);
private:

// dynamically allocated
char* str;

};

• This is often fine,
but not always

• Why would we not
want to do this
with this String
class?

Copy Constructors
• We can also define our own copy constructor. It

looks like this:

class String
{
public:

String(char* s);
String(const String& s);

private:

// dynamically allocated
char* str;

};

The copy constructor
accepts a const
reference.

In this class the copy
constructor would
allocate memory
before copying.

• This copy constructor replaces the default C++ one.

Using Multiple Files

• Most programs have too much code to fit in
a single source file

• So how do we separate code into multiple
source files?

• We can do this because there’s usually a
difference between declaration and definition

Header Files

• We use header files to contain declarations
of stuff: classes and functions, mainly

• Definitions can go in a separate source file

• Any source file that includes the header file
can use anything declared in that header

• Each source file is compiled into a separate
binary “object file”; they all get linked
together in a final linking stage

Example! Example!

#include “func.h”

int main()
{

func();
return 0;

}

#include <stdio.h>
#include “func.h”

void func()
{

printf(“hi!\n”);
}

void func();

main.cpp func.cpp

func.h

Note that when we’re #including
header files we’ve made, instead of
“standard” ones, we use quotes in
our include statement instead of <>
brackets

Example! Example!

#include “func.h”

int main()
{

func();
return 0;

}

#include <stdio.h>
#include “func.h”

void func()
{

printf(“hi!\n”);
}

void func();

int variable;

main.cpp func.cpp

func.h
What happens if we add a
variable in the header?

Problems

• Each C++ program can only have one object
of each name.

• If a header declares a variable, and the
header gets included multiple times...

• Linker errors!

/usr/bin/ld: multiple definitions of symbol _variable
/var/tmp//ccSMaERA.o definition of _variable in section (__DATA,__common)
/var/tmp//cclC3xNa.o definition of _variable in section (__DATA,__common)
collect2: ld returned 1 exit status

Solution
• The solution to this particular error is a new keyword:

extern
void func();

extern int variable;

• This tells the compiler about the variable (name,
type, etc) but that it will actually be declared later

• So in a source file somewhere, you need to declare
the variable “for real”

int variable;
in a source file

in the header

Other Header Stuff

• In the “C is dumb” category...

• Sometimes you’ll see stuff
like this in a header file to
make sure that the header
only gets included once

• If a header is included more
than once, the compiler will
complain that “foo” is defined
more than once

#ifndef _STRUCTS_H_
#define _STRUCTS_H_

struct foo
{
};

#endif

#pragma once

struct foo
{
};

- or -
structs.h

structs.h

Code!

• Let’s write a simple dynamic array class (not
like one you’d ever write)

• constructor/destructor

• private pointer variable

• member get/set functions

• member length function

• copy constructor

