Programming with

e

22C:109:SCB

Greg Nichols
Mondays / Wednesdays

6:30 - 7:45(ish)




Logistics

Introductions

Go over syllabus

About programming and languages
A little history

About C++ as a language

How to write and compile a simple program

How to write programs in general




What 1s Programming?

Computers are dumb - making them do useful things
involves telling them exactly what to do, step by step.

Programming 1s the process of taking a program and
breaking it down into a sequence of steps the
computer can handle (CPU instructions).

CPU instructions are very simple: e.g. add two
numbers, fetch a number from memory, see if a
number 1s equal to zero, etc.




[Low Level LLanguage

Usually this refers to assembly code

Fach code instruction becomes a single CPU
instruction

Hard to write, hard to read, hard to maintain
Not portable between different CPU families

... but great for control freaks, and can result in very
ethicient code




High Level Languages

Most programming languages are high-level (C++,
C, Perl, PHP, Java, Pascal, Whirl, Python...)

FEasy to write, easy to read (easier, anyway)
Not (usually) machine specific
Must be translated into assembly language

... meaning 1t often loses something in ethiciency




A Bit ‘o History

Before C++ came C, in the early 1970s

C was originally invented (no kidding) to play
Space Travel, a video game

Developed along with UNIX

C was designed to be minimalist:
Easy to compile into fast machine code
Nothing “behind the scenes”

Low level access to memory




...and then came C++

C++ 1s an extension to C, from the early

1980s

C++1s “C with classes”, and a few extra
language features

... but still with most of the low-level-ness of

C (no hand-holding)

Fast, powerful, standardized, and very
popular

... but error prone if you are not careful!




C++ 1s:

Compiled (translated into machine code in advance,
before run-time)

Strongly typed, meaning that each variable has a
type associated with 1t (float, int, whatever)

High level... but still pretty low

Portable - the same code can often be compiled on
many different kinds of computers with hittle or no
modification




Writing a C++ program

Programs can be written in any text editor

On the lab machines try gedit, nedit, emacs,
KDevelop, etc.

Via SSH (linux.cs.uiowa.edu) try pico

Use whatever text editor or platform or compiler you
are most comfortable with, but your program must
compile on Linux using g++!




Compiling/Running 1t

1. Compile with g++

2. It it works, run the resulting executable

3. Like this:

[gbnichol@servl16 ~/cpp]$ 1s

main.cpp

[gbnichol@servl16 ~/cpp]$ g++ -0 program main.cpp
[gbnichol@servl16 ~/cpp]$ 1ls

main.cpp program

[gbnichol@servl16 ~/cpp]$ ./program

Hello world: 42

[gbnichol@servl16 ~/cpp]




// a sample program, by
#include <iostream>
using namespace std;

int main()

{
b= araa=
TR oo =2k
S Ehe e el = UL b

// multiply some stuff
reSUtt———Tocatocha

// output the result
cont=<<="Hello-worltd:=="
S e o RR e P e =N e B

Lo er==()




Errors!

Errors are problems with your program
Difterent kinds of errors:

Compiler errors

Linker errors

Runtime errors




Compiler Errors

Compiler errors are problems with your
code that result in 1t not compiling

Code errors, typos, spelling errors, etc.

Errors must be fixed before the code will
compile; warnings don’t Aave to be hixed

(but you should probably fix them
anyway, 1f you can)




[inker Errors

Fach cpp fhile 1s compiled into an obyect file, which

contains the compiled version of that code

All the object files are “linked” together into a
single executable program

If the object files don’t mesh together well
(missing functions, duplicate functions, etc.) you
get linker errors

These must be ﬁxed before you can run your
program




Runtime Errors

You know... bugs!

Anytime your program crashes or 1n general
doesn’t work correctly

Divide by zero, running out of memory, or just
doing the wrong thing




Errors

Finding and fixing errors can be tricky and
sometimes frustrating - some errors can be hard
to find (= vs == for example)

Solution: practice and be patient.

The only way to get good at this 1s to do lots of
1t!




Thoughts on Programming

Programming is the process of taking a program and
breaking it down into a sequence of steps you can
put into code.

This 1s not always easy.

Doing 1t well requires patience and practice.

[t’s fun, though. Really. :-)




Programming (in general)

Divide the project up into small chunks.

Write each chunk independently. Use comments to
document anything that needs it.

Test that chunk. Make sure 1t works.
Then move onto other chunks.

Compile early and often, and fix any errors and
warnings before moving on.




