
Programming with
C++

22C:109:SCB
Greg Nichols

Mondays / Wednesdays
6:30 - 7:45(ish)

Logistics
✦ Introductions

✦ Go over syllabus

✦ About programming and languages

✦ A little history

✦ About C++ as a language

✦ How to write and compile a simple program

✦ How to write programs in general

What is Programming?

✦ Computers are dumb - making them do useful things
involves telling them exactly what to do, step by step.

✦ Programming is the process of taking a program and
breaking it down into a sequence of steps the
computer can handle (CPU instructions).

✦ CPU instructions are very simple: e.g. add two
numbers, fetch a number from memory, see if a
number is equal to zero, etc.

Low Level Language

✦ Usually this refers to assembly code

✦ Each code instruction becomes a single CPU
instruction

✦ Hard to write, hard to read, hard to maintain

✦ Not portable between different CPU families

✦ ... but great for control freaks, and can result in very
efficient code

High Level Languages

✦ Most programming languages are high-level (C++,
C, Perl, PHP, Java, Pascal, Whirl, Python...)

✦ Easy to write, easy to read (easier, anyway)

✦ Not (usually) machine specific

✦ Must be translated into assembly language

✦ ... meaning it often loses something in efficiency

A Bit ‘o History
✦ Before C++ came C, in the early 1970s

✦ C was originally invented (no kidding) to play
Space Travel, a video game

✦ Developed along with UNIX

✦ C was designed to be minimalist:

✦ Easy to compile into fast machine code

✦ Nothing “behind the scenes”

✦ Low level access to memory

...and then came C++
✦ C++ is an extension to C, from the early

1980s

✦ C++ is “C with classes”, and a few extra
language features

✦ ... but still with most of the low-level-ness of
C (no hand-holding)

✦ Fast, powerful, standardized, and very
popular

✦ ... but error prone if you are not careful!

C++ is:
✦ Compiled (translated into machine code in advance,

before run-time)

✦ Strongly typed, meaning that each variable has a
type associated with it (float, int, whatever)

✦ High level... but still pretty low

✦ Portable - the same code can often be compiled on
many different kinds of computers with little or no
modification

Writing a C++ program

✦ Programs can be written in any text editor

✦ On the lab machines try gedit, nedit, emacs,
KDevelop, etc.

✦ Via SSH (linux.cs.uiowa.edu) try pico

✦ Use whatever text editor or platform or compiler you
are most comfortable with, but your program must
compile on Linux using g++!

Compiling/Running it
✦ 1. Compile with g++

✦ 2. If it works, run the resulting executable

✦ 3. Like this:

[gbnichol@serv16 ~/cpp]$ ls
main.cpp
[gbnichol@serv16 ~/cpp]$ g++ -o program main.cpp
[gbnichol@serv16 ~/cpp]$ ls
main.cpp program
[gbnichol@serv16 ~/cpp]$./program
Hello world: 42
[gbnichol@serv16 ~/cpp]

// a sample program, by Greg
#include <iostream>
using namespace std;

int main()
{

int baz = 2;
int foo = 21;
int result;

// multiply some stuff
result = foo * baz;

// output the result
cout << “Hello world: ”

 << result << endl;

 return 0;
}

Errors!

✦ Errors are problems with your program

✦ Different kinds of errors:

✦ Compiler errors

✦ Linker errors

✦ Runtime errors

Compiler Errors

✦ Compiler errors are problems with your
code that result in it not compiling

✦ Code errors, typos, spelling errors, etc.

✦ Errors must be fixed before the code will
compile; warnings don’t have to be fixed
(but you should probably fix them
anyway, if you can)

Linker Errors
✦ Each cpp file is compiled into an object file, which

contains the compiled version of that code

✦ All the object files are “linked” together into a
single executable program

✦ If the object files don’t mesh together well
(missing functions, duplicate functions, etc.) you
get linker errors

✦ These must be fixed before you can run your
program

Runtime Errors

✦ You know... bugs!

✦ Anytime your program crashes or in general
doesn’t work correctly

✦ Divide by zero, running out of memory, or just
doing the wrong thing

Errors

✦ Finding and fixing errors can be tricky and
sometimes frustrating - some errors can be hard
to find (= vs == for example)

✦ Solution: practice and be patient.

✦ The only way to get good at this is to do lots of
it!

Thoughts on Programming

✦ Programming is the process of taking a program and
breaking it down into a sequence of steps you can
put into code.

✦ This is not always easy.

✦ Doing it well requires patience and practice.

✦ It’s fun, though. Really. :-)

Programming (in general)

✦ Divide the project up into small chunks.

✦ Write each chunk independently. Use comments to
document anything that needs it.

✦ Test that chunk. Make sure it works.

✦ Then move onto other chunks.

✦ Compile early and often, and fix any errors and
warnings before moving on.

